13.已知p:“?x∈[1,2],x2-a≥0”,q:“?x0∈R,使x02+2ax0+2-a=0”.若命題“p且q”是真命題,則實(shí)數(shù)a的取值范圍是a≤-1,或a=1.

分析 p真:可得a≤(x2min.q真:△≥0.由命題“p且q”是真命題,可得p與q都為真命題.

解答 解:p:“?x∈[1,2],x2-a≥0”,∴a≤(x2min=1,∴a≤1.
q:“?x0∈R,使x02+2ax0+2-a=0”,∴△=4a2-4(2-a)≥0,解得a≥1或a≤-2.
∵命題“p且q”是真命題,∴p與q都為真命題.
∴$\left\{\begin{array}{l}{a≤1}\\{a≥1或a≤-1}\end{array}\right.$,解得a≤-1或a=1.
則實(shí)數(shù)a的取值范圍是a≤-1,或a=1.
故答案為:a≤-1,或a=1.

點(diǎn)評(píng) 本題考查了不等式的解法、函數(shù)的性質(zhì)、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓$\frac{{x}^{2}}{9}$+y2=1,過(guò)左焦點(diǎn)F1傾斜角為$\frac{π}{6}$的直線交橢圓于A、B兩點(diǎn).求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)0<x<1時(shí),f(x)=8x,則f(-$\frac{19}{3}$)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列函數(shù)中,既不是奇函數(shù),也不是偶函數(shù)的是( 。
A.$y=x-\frac{1}{x}$B.y=ex+xC.$y={2^x}+\frac{1}{2^x}$D.$y=\sqrt{{x^2}-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.去年某地的月平均氣溫y(℃)與月份x(月)近似地滿足函數(shù)y=a+bsin($\frac{π}{6}$x+$\frac{π}{6}$)(a,b為常數(shù)).若6月份的月平均氣溫約為22℃,12月份的月平均氣溫約為4℃,則該地8月份的月平均氣溫約為31℃.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列函數(shù)中,在其定義域上既是偶函數(shù)又在(0,+∞)上單調(diào)遞減的是(  )
A.y=x2B.y=x+1C.y=-lg|x|D.y=-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.直角△ABC中,∠C=90°,D在BC上,CD=2DB,tan∠BAD=$\frac{1}{5}$,則sin∠BAC=( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3\sqrt{13}}{13}$D.$\frac{\sqrt{2}}{2}$或$\frac{3\sqrt{13}}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.集合M={x|x-2=0}的子集的個(gè)數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)拋物線y2=2px(x>0)的焦點(diǎn)為F,點(diǎn)A(0,$\sqrt{2}$),線段FA的中點(diǎn)在拋物線上,設(shè)動(dòng)直線l:y=kx+m與拋物線相切于點(diǎn)P,且與拋物線的準(zhǔn)線相交于點(diǎn)Q,以PQ為直徑的圓記為圓C.
(1)求p的值;
(2)證明:圓C與x軸必有公共點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案