【題目】如圖,某景區(qū)內(nèi)有兩條道路、,現(xiàn)計(jì)劃在上選擇一點(diǎn),新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知,,.若綠化區(qū)域改造成本為萬(wàn)元,新建道路成本為萬(wàn)元.

1)①設(shè),寫出該計(jì)劃所需總費(fèi)用的表達(dá)式,并寫出的范圍;

②設(shè),寫出該計(jì)劃所需總費(fèi)用的表達(dá)式,并寫出的范圍;

2)從上面兩個(gè)函數(shù)關(guān)系中任選一個(gè),求點(diǎn)在何處時(shí)改造計(jì)劃的總費(fèi)用最小.

【答案】1)①,;②;(2.

【解析】

1)①利用正弦定理求出、關(guān)于的表達(dá)式,根據(jù)題意可得出的表達(dá)式,并可求得的范圍;

②設(shè),利用余弦定理求出,根據(jù)題意可得出的表達(dá)式,并可求得的取值范圍;

2)利用導(dǎo)數(shù)求得函數(shù)的最小值,及其對(duì)應(yīng)的的值,進(jìn)而得解.

1)①設(shè),由正弦定理得

,

.

當(dāng)點(diǎn)與點(diǎn)重合的時(shí)候,,所以;

②設(shè),

;

2,則 ,

,得,且,所以,得.

當(dāng)時(shí),,此時(shí),函數(shù)單調(diào)遞減;

當(dāng)時(shí),,此時(shí),函數(shù)單調(diào)遞增.

所以當(dāng),即時(shí),改造計(jì)劃的總費(fèi)用最小.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合,,映射,使得,已知,.x,y,u的值分別是____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列是首項(xiàng)為2,公比為的等比數(shù)列,且前項(xiàng)和為.

(1)用表示

(2)是否存在自然數(shù),使得成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn),

(1)求證: AC1//平面CDB1;

(2)求二面角C1-AB-C的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有四名男生,三名女生排隊(duì)照相,七個(gè)人排成一排,則下列說(shuō)法正確的有(

A.如果四名男生必須連排在一起,那么有種不同排法

B.如果三名女生必須連排在一起,那么有種不同排法

C.如果女生不能站在兩端,那么有種不同排法

D.如果三個(gè)女生中任何兩個(gè)均不能排在一起,那么有種不同排法

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列選項(xiàng)中,說(shuō)法正確的是(

A.的否定是

B.若向量滿足 ,則的夾角為鈍角

C.,則

D.的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)調(diào)查,某學(xué)校開設(shè)了“街舞”、“圍棋”、“武術(shù)”三個(gè)社團(tuán),三個(gè)社團(tuán)參加的人數(shù)如下表所示:

社團(tuán)

街舞

圍棋

武術(shù)

人數(shù)

320

240

200

為調(diào)查社團(tuán)開展情況,學(xué)校社團(tuán)管理部采用分層抽樣的方法從中抽取一個(gè)容量為n的樣本,已知從“圍棋”社團(tuán)抽取的同學(xué)比從“街舞”社團(tuán)抽取的同學(xué)少2人.

(1)求三個(gè)社團(tuán)分別抽取了多少同學(xué);

(2)若從“圍棋”社團(tuán)抽取的同學(xué)中選出2人擔(dān)任該社團(tuán)活動(dòng)監(jiān)督的職務(wù),已知“圍棋”社團(tuán)被抽取的同學(xué)中有2名女生,求至少有1名女同學(xué)被選為監(jiān)督職務(wù)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)視覺(jué)和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取名同學(xué)(男),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)

幾何題

代數(shù)題

總計(jì)

男同學(xué)

女同學(xué)

總計(jì)

(1)能否據(jù)此判斷有的把握認(rèn)為視覺(jué)和空間能力與性別有關(guān)?

(2)經(jīng)過(guò)多次測(cè)試后,甲每次解答一道幾何題所用的時(shí)間在分鐘,乙每次解答一道幾何題所用的時(shí)間在分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.

(3)現(xiàn)從選擇做幾何的名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1, =9a2a6.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案