16.半徑為6的圓與x軸相切,且與圓x2+y2-6y+8=0內(nèi)切,則此圓的方程是( 。
A.(x-4)2+(y-6)2=6B.(x±4)2+(y-6)2=6C.(x-4)2+(y-6)2=36D.(x±4)2+(y-6)2=36

分析 先設(shè)出圓的標(biāo)準(zhǔn)方程,根據(jù)兩圓相內(nèi)切求得圓心距,進(jìn)而根據(jù)兩點間的距離公式求得圓心距的表達(dá)式,根據(jù)圓與x軸相切求得m的值,代入圓心距表達(dá)式中求得n,則圓的方程可得.

解答 解:設(shè)(x-m)2 +(y-n)2 =36,與圓x2+(y-3)2=1內(nèi)切,
∴圓心距=6-1=5,
即(m-0)2+(n-3)2=25,
∵圓與x軸相切,∴n=r=6,m=±4,
圓的方程為:(x±4)2+(y-6)2 =36.
故選D.

點評 本題主要考查了圓與圓的位置關(guān)系.考查了用待定系數(shù)法求圓的方程問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知:an=log(n+1)(n+2)(n∈Z*),若稱使乘積a1•a2•a3…an為整數(shù)的數(shù)n為劣數(shù),則在區(qū)間(1,20016)內(nèi)所有的劣數(shù)的和2026.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知△ABC的面積為1,且AB=1,A=$\frac{3π}{4}$,則BC長為$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列命題中的真命題是( 。
A.三角形的內(nèi)角必是第一象限或第二象限的角
B.角α的終邊在x軸上時,角α的正弦線、正切線分別變成一個點
C.終邊在第一象限的角是銳角
D.終邊在第二象限的角是鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.f(x)=-x2+a(2-a)+b,
(1)若f(x)>0的解集為(-1,2),求a,b;
(2)對任意的實數(shù)a,f(1)>0恒成立,求b取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知命題p:?x0∈R,有x02=-1;命題q:?x∈(0,$\frac{π}{2}$),有x>sinx.則下列命題是真命題的是( 。
A.p∧qB.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.判斷函數(shù)f(x)=ex-x的單調(diào)性,并求單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知三棱錐P-ABC的四個頂點都在半徑為R的球面上,底面ABC是正三角形,△ABC的外接圓的半徑為R,PA=PB=PC,若三棱錐P-ABC的體積是$\frac{\sqrt{3}}{4}$,則球的表面積為4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+2(x≤0)}\\{lo{g}_{2}x(x>0)}\end{array}\right.$,則f(0)=2,f[f(0)]=1.

查看答案和解析>>

同步練習(xí)冊答案