11.已知函數(shù)f(x+1)的定義域是[1,9),則函數(shù)y=f(x-1)+$\sqrt{7-x}$的定義域是[3,7].

分析 根據(jù)函數(shù)f(x+1)的定義域求出f(x)的定義域,再求函數(shù)y=f(x-1)+$\sqrt{7-x}$的定義域.

解答 解:根據(jù)函數(shù)f(x+1)的定義域是[1,9),
得x∈[1,9),
所以x+1∈[2,10);
由函數(shù)y=f(x-1)+$\sqrt{7-x}$,
得$\left\{\begin{array}{l}{2≤x-1<10}\\{7-x≥0}\end{array}\right.$,
解得3≤x≤7,
所以y=f(x-1)+$\sqrt{7-x}$的定義域是[3,7].
故答案為:[3,7].

點(diǎn)評 本題考查了抽象函數(shù)的定義域求法問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=4x2-kx-8在[2,10]上具有單調(diào)性,則k的取值范圍是( 。
A.(-∞,-80]∪[-16,+∞)B.[-80,-16]C.(-∞,16]∪[80,+∞)D.[16,80]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)數(shù)列{an}是以2為首項(xiàng),1為公差的等差數(shù)列,數(shù)列{bn}是以1為首項(xiàng),2為公比的等比數(shù)列,則b${\;}_{{a}_{1}}$+b${\;}_{{a}_{2}}$+b${\;}_{{a}_{3}}$+…+b${\;}_{{a}_{6}}$=126.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求值:
(1)2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$
(2)已知x+$\frac{1}{x}$=3,求x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.集合{x∈N|x≤3}還可以表示為( 。
A.{0,1,2,3}B.{2,1,3}C.{1,2,3,4}D.{x|0≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=a-$\frac{2}{x}$
(1)若2f(1)=f(2),求a的值;
(2)判斷f(x)在(-∞,0)上的單調(diào)性并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)集合M={x|x>1},P={x|x2-6x+9=0},則下列關(guān)系中正確的是( 。
A.M=PB.P?MC.M?PD.M∪P=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow a=(1,2),\overrightarrow b=(1,0),\overrightarrow c=(3,-4)$,若λ為實(shí)數(shù)且$(\overrightarrow a+λ\overrightarrow b)$∥$\overrightarrow c$,則λ=$-\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.冪函數(shù)f(x)的圖象過點(diǎn)$({2,\sqrt{2}})$,則$f({\frac{1}{2}})$=( 。
A.$\sqrt{2}$B.4C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案