已知函數(shù)f(x)=x2+(x≠0,a∈R)
(1)當(dāng)a為何值時(shí),函數(shù)f(x)為偶函數(shù);
(2)若f(x)在區(qū)間[2,+∞)是增函數(shù),求實(shí)數(shù)a的取值范圍.
【答案】分析:(1)由已知中函數(shù),根據(jù)函數(shù)奇偶性的定義,可判斷出a=0時(shí),f(x)=x2為偶函數(shù);
(2)根據(jù)f(x)在區(qū)間[2,+∞)是增函數(shù),結(jié)合函數(shù)單調(diào)性的定義,可得當(dāng)x2>x1≥2,f(x1)-f(x2)<0,由此構(gòu)造關(guān)于a的不等式,解不等式可得實(shí)數(shù)a的取值范圍.
解答:解:(1)當(dāng)a=0時(shí),f(x)=x2為偶函數(shù);當(dāng)a≠0時(shí),f(x)既不是奇函數(shù)也不是偶函數(shù).
(2)設(shè)x2>x1≥2,=,
由x2>x1≥2得x1x2(x1+x2)>16,x1-x2<0,x1x2>0
要使f(x)在區(qū)間[2,+∞)是增函數(shù)只需f(x1)-f(x2)<0,
即x1x2(x1+x2)-a>0恒成立,則a≤16.
另解(導(dǎo)數(shù)法):,要使f(x)在區(qū)間[2,+∞)是增函數(shù),只需當(dāng)x≥2時(shí),f'(x)≥0恒成立,即,則a≤2x3∈[16,+∞)恒成立,
故當(dāng)a≤16時(shí),f(x)在區(qū)間[2,+∞)是增函數(shù).
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的性質(zhì),函數(shù)單調(diào)性的性質(zhì),熟練掌握函數(shù)奇偶性和單調(diào)性的定義,將已知轉(zhuǎn)化為關(guān)于參數(shù)a的方程(不等式)是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案