如圖,四棱錐中,側(cè)面是邊長(zhǎng)為2的正三角形,且與底面垂直,底面是的菱形,為的中點(diǎn).
(Ⅰ)求與底面所成角的大;
(Ⅱ)求證:平面;(Ⅲ)求二面角的余弦值.
(Ⅰ) 45°; (Ⅱ)參考解析; (Ⅲ) -
解析試題分析:(Ⅰ) 由于平面PDC垂直于平面AC,并且三角形PDC是等邊三角形.所以通過(guò)做DC邊上的高PO.即可得直線與底面所成角為∠PAO.通過(guò)底面AC是菱形可求得AO,所以通過(guò)解直角三角形PAO即可求得∠PAO 的大小.即為結(jié)論.
(Ⅱ) 通過(guò)建立空間坐標(biāo)系,寫(xiě)出相關(guān)點(diǎn)A,P,D,B,C,M的坐標(biāo).計(jì)算出向量PA,向量DM,向量DC.通過(guò)向量PA與向量DM的數(shù)量積為0可得這兩條直線垂直.同理可以證明PA垂直于DC.從而可得直線PA垂直于平面CDM.即通過(guò)向量知識(shí)證得線面垂直.
(Ⅲ)求二面角的余弦值通過(guò)求出平面DCM和平面BCM的法向量.再求兩法向量的夾角的余弦值的絕對(duì)值,再根據(jù)圖形判斷正負(fù)即可.
試題解析:(I)取DC的中點(diǎn)O,由ΔPDC是正三角形,有PO⊥DC.
又∵平面PDC⊥底面ABCD,∴PO⊥平面ABCD于O.連結(jié)OA,則OA是PA在底面上的射影.
∴∠PAO就是PA與底面所成角.∵∠ADC=60°,由已知ΔPCD和ΔACD是全等的正三角形,從而求得OA=OP=.∴∠PAO=45°.∴PA與底面ABCD可成角的大小為45°.
(II)由底面ABCD為菱形且∠ADC=60°,DC=2,DO=1,有OA⊥DC.建立空間直角坐標(biāo)系如圖,則, .
由M為PB中點(diǎn),
∴.∴
.∴,
.
∴PA⊥DM,PA⊥DC. ∴PA⊥平面DMC.
(III).令平面BMC的法向量,
則,從而x+z=0; ……①, ,從而. ……②
由①、②,取x=?1,則. ∴可取.
由(II)知平面CDM的法向量可取,
∴.∴所求二面角的余弦值為-.…13分
考點(diǎn):1.線面所成的角.2.空間坐標(biāo)系的建立.3.線面垂直的判斷.4.二面角的求法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=.
(Ⅰ)若M為PA中點(diǎn),求證:AC∥平面MDE;
(Ⅱ)求平面PAD與PBC所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知平行六面體ABCD—A1B1C1D1的底面為正方形,O1、O分別為上、下底面的中心,且A1在底面ABCD上的射影是O。
(Ⅰ)求證:平面O1DC⊥平面ABCD;
(Ⅱ)若∠A1AB=60°,求平面BAA1與平面CAA1的夾角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱錐P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC, D是PB上一點(diǎn),且CD⊥平面PAB.
(1)求證:AB⊥平面PCB;
(2)求異面直線AP與BC所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱ABC—A1B1C1中, ,直線B1C與平面ABC成45°角.
(1)求證:平面A1B1C⊥平面B1BCC1;
(2)求二面角A—B1C—B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱中,,是棱上的一點(diǎn),是的延長(zhǎng)線與的延長(zhǎng)線的交點(diǎn),且∥平面。
(1)求證:;
(2)求二面角的平面角的余弦值;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱柱的底面是平行四邊形,且底面,,,°,點(diǎn)為中點(diǎn),點(diǎn)為中點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)設(shè)二面角的大小為,直線與平面所成的角為,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com