在正三棱柱ABC—A
1B
1C
1中,AB=1,若二面角C—AB—C
1的大小為60°,則點C到平面C
1AB的距離為( )
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)如圖,正方形
和四邊形
所在的平面互相垂直,
,
,
,
(Ⅰ)求證:
;
(Ⅱ)求異面直線
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知正四棱錐
(底面是正方形且側(cè)棱都相等)中,
,
是側(cè)棱
的中點,則異面直線
與
所成角的大小為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,三棱柱
中,
面
,
=
,
,
為
的中點,
為
的中點:
(1)求直線
與
所成的角的余弦值;
(2)在線段
上是否存在點
,使
平面
,若存在,求出
;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在長方體
中,
.若
分別為線段
,
的中點,則直線
與平面
所成角的正弦值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AB,M、N分別是PA、BC的中點.
(I)求證:MN∥平面PCD;
(II)在棱PC上是否存在點E,使得AE上平面PBD?若存在,求出AE與平面PBC所成角的正弦值,若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
給出以下四個命題
①如果直線
和平面
內(nèi)無數(shù)條直線垂直,則
⊥
;
②如果平面
//
,直線
,直線
,則
、
兩條直線一定是異面直線;
③如果平面
上有不在同一直線上的三個點,它們到平面
的距離都相等,那么
//
;
④如果
、
是異面直線,則一定存在平面
過
且與
垂直
其中真命題的個數(shù)是:( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.(12分)如圖,在三棱錐
中,
平面
,
,
、
、
分別為棱
、
、
的中點,
,
(1)求證:
;
(2)求直線
與平面
所成角正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
給出下列命題:(1)三點確定一個平面;(2)在空間中,過直線外一點只能作一條直線與該直線平行;(3)若平面
上有不共線的三點到平面
的距離相等,則
;(4)若直線
滿足
則
.其中正確命題的個數(shù)是 ( )
查看答案和解析>>