【題目】在數列中,已知,(n∈N*)
(1)求數列的通項公式
(2)若(λ為非零常數),問是否存在整數λ使得對任意n∈N*都有?若存在,求出λ的值;若不存在,請說明理由.
【答案】(1);(2)見解析
【解析】
(1)由已知,得an=Sn﹣1+3n﹣4(n≥2),利用an與sn的關系,兩式相減,an+1+3=2(an+3)(n≥2),初步判斷新數列{an+3}具有等比數列的性質,再考慮n=1的情形;
(2)寫出數列{bn}的通項,首先假設存在λ使得滿足題意,然后計算化簡bn+1﹣bn,再結合恒成立問題進行轉化,將問題轉化為:對任意的n∈N*恒成立.然后分n為奇偶數討論即可獲得λ的范圍,再結合為整數即可獲得問題的解答.
(1)由an+1=Sn+3n﹣1(n∈N*)①
得an=Sn﹣1+3n﹣4(n≥2)②
①﹣②得an+1=2an+3(n≥2)
∴an+1+3=2(an+3)(n≥2)
又由②得 a2=S1+6﹣4=a1+2=1
∴a2+3=4
∴a2+3=2(a1+3)
∴an+1+3=2(an+3)(n≥1)
∵a1+3≠0,∴an+3≠0,∴
∴數列{an+3}是首項為2,公比為2的等比數列
∴an+3=2×2n﹣1=2n
∴數列{an}的 an=2n﹣3(n≥1)
(2)由(1)可得 bn=3n+(﹣1)n﹣1λ2n
bn+1=3n+1+(﹣1)nλ2n+1
要使bn+1>bn恒成立,只需bn+1﹣bn=23n﹣3λ(﹣1)n﹣12n>0恒成立,
即恒成立
當n為奇數時,恒成立 而的最小值為1∴λ<1
當n為偶數時,恒成立 而最大值為∴
即λ的取值范圍是1>,且λ≠1
又λ為整數.
∴存在λ=﹣1或0,使得對任意n∈N*都有bn+1>bn.
科目:高中數學 來源: 題型:
【題目】某校高一(1)班全體男生的一次數學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖所示,據此解答如下問題:
(1)求該班全體男生的人數;
(2)求分數在之間的男生人數,并計算頻率分布直方圖中之間的矩形的高.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}為等差數列,且a5=14,a7=20,數列{bn}的前n項和為Sn , b1= 且3Sn=Sn﹣1+2(n≥2,n∈N).
(Ⅰ)求數列{an},{bn}的通項公式;
(Ⅱ)若cn=anbn , n=1,2,3,…,Tn為數列{cn}的前n項和,Tn<m對n∈N*恒成立,求m的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)是(﹣1,1)上的偶函數,且在區(qū)間(﹣1,0)上是單調遞增的,A,B,C是銳角三角形△ABC的三個內角,則下列不等式中一定成立的是( )
A.f(sinA)>f(sinB)
B.f(sinA)>f(cosB)
C.f(cosC)>f(sinB)
D.f(sinC)>f(cosB)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高一(1)班全體男生的一次數學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖所示,據此解答如下問題:
(1)求該班全體男生的人數;
(2)求分數在之間的男生人數,并計算頻率公布直方圖中之間的矩形的高;
(3)根據頻率分布直方圖,估計該班全體男生的數學平均成績(同一組中的數據用該組區(qū)間的中點值代表).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·湖南)如下圖,直三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,E、F分別是BC、CC1的中點.
(1)證明:平面AEF⊥平面B1BCC1;
(2)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐F-AEC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示程序框圖是用“二分法”求方程的近似解的算法,有下列判斷:
①若則輸出的值在之間;
②若則程序執(zhí)行完畢將沒有值輸出;
③若則程序框圖最下面的判斷框剛好執(zhí)行8次程序就結束.
其中正確命題的個數為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com