【題目】在直角坐標系中,圓的參數(shù)方程為為參數(shù)),圓與圓外切于原點,且兩圓圓心的距離,以坐標原點為極點,軸正半軸為極軸建立極坐標系.

(1)求圓和圓的極坐標方程;

(2)過點的直線,與圓異于點的交點分別為點,,與圓異于點的交點分別為點,,且,求四邊形面積的最大值.

【答案】1的極坐標方程為的極坐標方程為;(2.

【解析】

試題(1)先將圓的參數(shù)方程化為直角坐標方程,再求出圓的直角坐標方程,最后利用將直角坐標方程化為極坐標方程即可;(2)由,可得,,得,利用三角函數(shù)有界性求最值即可.

試題解析:(1)由圓的參數(shù)方程為參數(shù)),

所以,

又因為圓與圓外切于原點,且兩圓圓心的距離,

可得,則圓的方程為,

所以由,得圓的極坐標方程為,

的極坐標方程為.

2)由已知設,

則由,可得,,

由(1)得:

所以,

所以當時,即時,有最大值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】是奇函數(shù),是偶函數(shù),且其中.

1)求的表達式,并求函數(shù)的值域

2)若關于的方程在區(qū)間內(nèi)恰有兩個不等實根,求常數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義城為R的函數(shù),若滿足:①;②當,且時,都有;③當時,都有,則稱偏對稱函數(shù)”.下列函數(shù)是偏對稱函數(shù)的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】空間中有不共面的個點.求證:存在無窮個平面,恰好通過其中的兩個點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 已知函數(shù)(a為常數(shù)).

(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)判斷的單調(diào)性,并證明之;

2)若存在實數(shù),使得函數(shù)在區(qū)間上的值域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】半期考試后,班長小王統(tǒng)計了50名同學的數(shù)學成績,繪制頻率分布直方圖如圖所示.

根據(jù)頻率分布直方圖,估計這50名同學的數(shù)學平均成績;

用分層抽樣的方法從成績低于115的同學中抽取6名,再在抽取的這6名同學中任選2名,求這兩名同學數(shù)學成績均在中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C:的右焦點為F,點A(一2,2)為橢圓C內(nèi)一點。若橢圓C上存在一點P,使得|PA|+|PF|=8,則m的取值范圍是( ).

A. B. [9,25] C. D. [3,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解甲、乙兩個工廠生產(chǎn)的輪胎的寬度是否達標,分別從兩廠隨機各選取了個輪胎,將每個輪胎的寬度(單位: )記錄下來并繪制出如下的折線圖:

(1)分別計算甲、乙兩廠提供的個輪胎寬度的平均值;

(2)輪胎的寬度在內(nèi),則稱這個輪胎是標準輪胎.

(i)若從甲乙提供的個輪胎中隨機選取個,求所選的輪胎是標準輪胎的概率;

(ii)試比較甲、乙兩廠分別提供的個輪胎中所有標準輪胎寬度的方差大小,根據(jù)兩廠的標準輪胎寬度的平均水平及其波動情況,判斷這兩個工廠哪個廠的輪胎相對更好?

查看答案和解析>>

同步練習冊答案