已知為常數(shù),函數(shù)有兩個(gè)極值點(diǎn),則(  )
A.B.
C.D.
D

試題分析:求導(dǎo)得:.易得在點(diǎn)P(1,0)處的切線為.當(dāng)時(shí),直線與曲線交于不同兩點(diǎn)(如下圖),且,

當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,
是極小值,是極大值.
.
.
,則,所以單調(diào)遞增,,即.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),,其中,且.
⑴當(dāng)時(shí),求函數(shù)的最大值;
⑵求函數(shù)的單調(diào)區(qū)間;
⑶設(shè)函數(shù)若對(duì)任意給定的非零實(shí)數(shù),存在非零實(shí)數(shù)),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)=。
(1)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值;
(3)在(1)的條件下,設(shè)=+,
求證:  (),參考數(shù)據(jù):。(13分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)時(shí),求處的切線方程;
(Ⅱ)若對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)當(dāng)時(shí),設(shè)函數(shù),若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商場(chǎng)預(yù)計(jì)2014年從1月起前個(gè)月顧客對(duì)某種商品的需求總量(單位:件)
(1)寫出第個(gè)月的需求量的表達(dá)式;
(2)若第個(gè)月的銷售量(單位:件),每件利潤(rùn)(單位:元),求該商場(chǎng)銷售該商品,預(yù)計(jì)第幾個(gè)月的月利潤(rùn)達(dá)到最大值?月利潤(rùn)的最大值是多少?(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),函數(shù)
(I)試求f(x)的單調(diào)區(qū)間。
(II)若f(x)在區(qū)間上是單調(diào)遞增函數(shù),試求實(shí)數(shù)a的取值范圍:
(III)設(shè)數(shù)列是公差為1.首項(xiàng)為l的等差數(shù)列,數(shù)列的前n項(xiàng)和為,求證:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)其中為自然對(duì)數(shù)的底數(shù), .
(1)設(shè),求函數(shù)的最值;
(2)若對(duì)于任意的,都有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知、都是定義在R上的函數(shù),,,,則關(guān)于的方程有兩個(gè)不同實(shí)根的概率為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的極大值為           .

查看答案和解析>>

同步練習(xí)冊(cè)答案