(本小題滿分12分)已知函數(shù) .
(1) 當(dāng)時,求函數(shù)的最值;
(2) 求函數(shù)的單調(diào)區(qū)間;
(3)(僅385班、389班學(xué)生做) 試說明是否存在實數(shù)使的圖象與無公共點.

解:(1) 函數(shù)的定義域是.
當(dāng)時,,所以為減函數(shù) ,
為增函數(shù),所以函數(shù)f (x)的最小值為=.
(2)  
時,則f(x)恒成立,
所以的增區(qū)間為.
,則故當(dāng),
當(dāng)時,f(x),
所以的減區(qū)間為,的增區(qū)間為.
(3)時,由(1)知上的最小值為,
上單調(diào)遞減,
所以,
因此存在實數(shù)使的最小值大于,
故存在實數(shù)使的圖象與無公共點.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題14分)已知函數(shù)f (x) = ax3 +x2 -ax,其中a,x∈R.
(Ⅰ)若函數(shù)f (x)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求a的取值范圍;
(Ⅱ)直接寫出(不需給出運算過程)函數(shù)的單調(diào)遞減區(qū)間;
(Ⅲ)如果存在a∈(-∞,-1],使得函數(shù), x∈[-1, b](b > -1),在x = -1處取得最小值,試求b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)設(shè)e為自然對數(shù)的底)。
(1)求pq的關(guān)系;
(2)若在其定義域為單調(diào)函數(shù),求p的取值范圍。
(3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知二次函數(shù)
為常數(shù));.若直線1、2與函數(shù)的圖象以及2,y軸與函數(shù)的圖象
所圍成的封閉圖形如陰影所示. 
(1)求、b、c的值;
(2)求陰影面積S關(guān)于t的函數(shù)S(t)的解析式;
(3)若問是否存在實數(shù)m,使得的圖象與的圖象有且只有兩個不同的交點?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)經(jīng)銷商用一輛J型卡車將某種水果從果園運送(滿載)到相距400km的水果批發(fā)市場.據(jù)測算,J型卡車滿載行駛時,每100km所消耗的燃油量u(單位:資、車損等其他費用平均每小時300元.已知燃油價格為每升(L)7.5元.
(1)設(shè)運送這車水果的費用為y(元)(不計返程費用),將y表示成速度v的函數(shù)關(guān)系式;
(2)卡車該以怎樣的速度行駛,才能使運送這車水果的費用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)已知是函數(shù)的極值點.
(1) 求的值;   
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)R時,試討論方程的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

計算:=_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)若函數(shù),
(1)當(dāng)時,求函數(shù)的單調(diào)增區(qū)間;
(2)函數(shù)是否存在極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

. (本小題滿分12分)
已知函數(shù)處取得極值.
(Ⅰ) 求
(Ⅱ) 設(shè)函數(shù),如果在開區(qū)間上存在極小值,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案