(1)已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,3)、B(3,1)、C(-1,0),求BC邊上的高所在的直線方程.
(2)過(guò)橢圓內(nèi)一點(diǎn)M(2,1)引一條弦,使得弦被M點(diǎn)平分,求此弦所在的直線方程.
【答案】分析:(1)根據(jù)l⊥m?kl×km=-1,先求出高所在直線的斜率,進(jìn)而利用點(diǎn)斜式即可求出;
(2)利用“點(diǎn)差法”先求出弦所在直線的斜率,再利用點(diǎn)斜式即可求出.
解答:解:(1)設(shè)BC邊上的高為AD(D為垂足),
,kBC×kAD=-1,∴kAD=-4,
∴直線AD的方程為y-3=-4(x-1),化為4x+y-7=0.
(2)設(shè)要求的直線與橢圓相較于點(diǎn)A(x1,y1),B(x2,y2),則,
兩式相減得=0,
,,,
,解得
∴直線AB為,化為x+2y-4=0.
點(diǎn)評(píng):熟練掌握兩條直線垂直與斜率的關(guān)系、點(diǎn)斜式及“點(diǎn)差法”是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)為A(1,-2,5),B(-1,0,1),C(3,-4,5),則邊BC上的中線長(zhǎng)為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,3)、B(3,1)、C(-1,0),求BC邊上的高所在的直線方程.
(2)過(guò)橢圓
x2
16
+
y2
4
=1
內(nèi)一點(diǎn)M(2,1)引一條弦,使得弦被M點(diǎn)平分,求此弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知△ABC的頂點(diǎn)A(1,1),B(3,2),C(2,4),求△ABC的面積.
(2)若△ABC的頂點(diǎn)A在直線y=x上運(yùn)動(dòng),頂點(diǎn)B(6,8),頂點(diǎn)C在線段y=2x (3≤x≤5)上運(yùn)動(dòng),且A、C、B三點(diǎn)的橫坐標(biāo)成等差數(shù)列,問(wèn)△ABC的面積是否存在最大值?若存在求出最大值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖2-1-18,已知△ABC的外接圓中,D、E分別為的中點(diǎn),弦DEAB、ACFG.求證:AF =AG.

圖2-1-18

查看答案和解析>>

同步練習(xí)冊(cè)答案