【題目】某商場銷售某件商品的經(jīng)驗表明,該商品每日的銷量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù)。已知銷售價格為5元/千克時,每日可售出該商品11千克。
(Ⅰ)求實數(shù)的值;
(Ⅱ)若該商品的成本為3元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大。
【答案】(Ⅰ);(Ⅱ)當(dāng)銷售價格為4元/千克時,商場每日銷售該商品所獲得的利潤最大.
【解析】
試題分析:(Ⅰ)因為銷售價格為5元/千克時,每日可售出該商品11千克即為時,代入解析式可求得a;(Ⅱ)本小題考查用導(dǎo)數(shù)方法解決函數(shù)最值問題,先求出函數(shù)的導(dǎo)數(shù),列表分析導(dǎo)函數(shù)在各部分區(qū)間內(nèi)的單調(diào)情況,找到極值點,同時要注意函數(shù)的定義域.
試題解析:(Ⅰ)根據(jù)題意可得,當(dāng)時,,代入解析式得:,所以;
(Ⅱ)因為,所以該商品每日銷售量為:
每日銷售該商品所獲得的利潤為:
,
所以
所以,的變化情況如下表:
(3,4) | 4 | (4,6) | |
+ | 0 | - | |
遞增 | 極大值42 | 遞減 |
由上表可得,是函數(shù)在區(qū)間(3,6)上的極大值點,也是最大值點;
所以當(dāng)時,函數(shù)取得最大值42;
因此,當(dāng)銷售價格為4元/千克時,商場每日銷售該商品所獲得的利潤最大.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:指數(shù)函數(shù)y=(1-a)x是R上的增函數(shù),命題q:不等式ax2+2x-1>0有解.若命題p是真命題,命題q是假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五棱錐中,平面平面,且.
(1)已知點在線段上,確定的位置,使得平面;
(2)點分別在線段上,若沿直線將四邊形向上翻折,與恰好重合,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右焦點分別為、,上頂點為,過與垂直的直線交軸負半軸于點,且.
(1)求橢圓的離心率;
(2)若過、、三點的圓恰好與直線相切,求橢圓的方程;
(3)過的直線與(2)中橢圓交于不同的兩點、,則的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓與軸交于兩點,過點的圓的切線為是圓上異于的一點,垂直于軸,垂足為,是的中點,延長分別交于.
(1)若點,求以為直徑的圓的方程,并判斷是否在圓上;
(2)當(dāng)在圓上運動時,證明:直線恒與圓相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線經(jīng)過點A (1,0).
(1)若直線與圓C相切,求直線的方程;
(2)若直線與圓C相交于P,Q兩點,求三角形CPQ面積的最大值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A. 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
B. 在線性回歸分析中,回歸直線不一定過樣本點的中心
C. 在回歸分析中, 為0.98的模型比為0.80的模型擬合的效果好
D. 自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關(guān)系叫做相關(guān)關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)測算,某型號汽車在勻速行駛過程中每小時耗油量 (升)與速度 (千米/每小時) 的關(guān)系可近似表示為:.
(Ⅰ)該型號汽車速度為多少時,可使得每小時耗油量最低?
(Ⅱ)已知兩地相距120公里,假定該型號汽車勻速從地駛向地,則汽車速度為多少時總耗油量最少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com