16.在標(biāo)有“甲”的袋中有4個紅球和3個白球,這些球除顏色外完全相同.
(Ⅰ)若從袋中依次取出3個球,求在第一次取到紅球的條件下,后兩次均取到白球的概率;
(Ⅱ)現(xiàn)從甲袋中取出個2紅球,1個白球,裝入標(biāo)有“乙”的空袋.若從甲袋中任取2球,乙袋中任取1球,記取出的紅球的個數(shù)為X,求X的分布列和數(shù)學(xué)期望EX.

分析 (Ⅰ)利用條件概率公式計算所求的概率值;
(Ⅱ)由題意知X的所有可能取值,計算對應(yīng)的概率值,
寫出隨機變量X的分布列,計算數(shù)學(xué)期望值.

解答 解:(Ⅰ)記“第一次取到紅球”為事件A,“后兩次均取到白球”為事件B,
則$P(A)=\frac{4}{7}$,$P({AB})=\frac{4×3×2}{7×6×5}=\frac{4}{35}$;
所以,“第一次取到紅球的條件下,后兩次均取到白球的概率”為
$P({B|A})=\frac{{P({AB})}}{P(A)}=\frac{1}{5}$;…(4分)
(或$P({B|A})=\frac{C_3^1C_2^1}{C_6^1C_5^1}=\frac{1}{5}$)    …(4分)
(Ⅱ)X的所有可能取值為0,1,2,3;   …(5分)
則$P(X=0)=\frac{C_2^2}{C_4^2}•\frac{C_1^1}{C_3^1}=\frac{1}{18}$,
$P(X=1)=\frac{C_2^1C_2^1}{C_4^2}•\frac{C_1^1}{C_3^1}+\frac{C_2^2}{C_4^2}•\frac{C_2^1}{C_3^1}=\frac{6}{18}=\frac{1}{3}$,
$P(X=2)=\frac{C_2^2}{C_4^2}•\frac{C_1^1}{C_3^1}+\frac{C_2^1C_2^1}{C_4^2}•\frac{C_2^1}{C_3^1}=\frac{9}{18}=\frac{1}{2}$,
$P(X=3)=\frac{C_2^2}{C_4^2}•\frac{C_2^1}{C_3^1}=\frac{2}{18}=\frac{1}{9}$;         …(9分)
所以隨機變量X的分布列為:

X0123
P$\frac{1}{18}$$\frac{1}{3}$$\frac{1}{2}$$\frac{1}{9}$
…(10分)
數(shù)學(xué)期望為$EX=0×\frac{1}{18}+1×\frac{1}{3}+2×\frac{1}{2}+3×\frac{1}{9}=\frac{5}{3}$.…(12分)

點評 本題考查了條件概率與離散型隨機變量的分布列和數(shù)學(xué)期望問題,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知A(3,0),B(2,1),則向量$\overrightarrow{AB}$的單位向量的坐標(biāo)是(  )
A.(1,-1)B.(-1,1)C.$({-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}})$D.$({\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{2}}}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知非零向量$\overrightarrow a,\vec b$滿足$|\overrightarrow a|=2|\vec b|$且$(\overrightarrow a+\vec b)⊥\vec b$,則向量$\overrightarrow a,\vec b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosφ\\ y=2+2sinφ\end{array}\right.$(φ為參數(shù)),以O(shè)為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓C的普通方程;
(Ⅱ)直線l的極坐標(biāo)方程是$2ρsin({θ+\frac{π}{6}})=5\sqrt{3}$,射線$OM:θ=\frac{π}{6}$與圓C的交點為O、P,與直線l的交點為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.6個人站成一排,若甲、乙兩人之間恰有2人,則不同的站法種數(shù)為144.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示,在南海上有兩座燈塔A,B,這兩座燈座之間的距離為60千米,有個貨船從島P處出發(fā)前往距離120千米島Q處,行駛至一半路程時剛好到達(dá)M處,恰好M處在燈塔A的正南方,也正好在燈塔B的正西方,向量$\overrightarrow{PQ}⊥\overrightarrow{BA}$,則$\overrightarrow{AQ}•\overrightarrow{BP}$=-3600.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知單位向量$\overrightarrow a,\overrightarrow b$滿足$\overrightarrow a⊥\overrightarrow b$,向量$\overrightarrow m=2\overrightarrow a-\sqrt{t-1}\overrightarrow b,\overrightarrow n=t\overrightarrow a+\overrightarrow b$,(t為正實數(shù)),則$\overrightarrow m•\overrightarrow n$的最小值為( 。
A.$\frac{15}{8}$B.$\frac{5}{2}$C.$\frac{15}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.過曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點F作曲線C2:x2+y2=a2的切線,設(shè)切點為M,延長FM交曲線C3:y2=2px(p>0)于點N,其中曲線C1與C3有一個共同的焦點,若OF=ON(O為坐標(biāo)原點),則曲線C1的離心率為( 。
A.$\frac{\sqrt{5}+1}{2}$B.$\frac{\sqrt{3}+1}{2}$C.$\sqrt{5}$+1D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖.
分組頻數(shù)頻率
[10,15)100.25
[15,20)24n
[20,25)mp
[25,30]20.05
合計M1
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)估計這次學(xué)生參加社區(qū)服務(wù)人數(shù)的眾數(shù)、中位數(shù)以及平均數(shù).

查看答案和解析>>

同步練習(xí)冊答案