已知等差數(shù)列{an}滿足:
OA
=a5
OB
+a19
OC
,且A、B、C三點共線(該直線不過O點),則a3+a13+a20=(  )
A、
3
2
B、2
C、
5
2
D、3
考點:平面向量的基本定理及其意義
專題:平面向量及應用
分析:首先,根據(jù)A、B、C三點共線(該直線不過O點),得到a5+a19=1,然后,結合等差數(shù)列的基本性質求解.
解答: 解:∵A、B、C三點共線(該直線不過O點),
∴a5+a19=1,
∴2a12=1,
∵a3+a13+a20
=a4+a12+a20
=3a12=
3
2
,
∴a3+a13+a20=
3
2
,
故選:A.
點評:本題重點考查了三點共線的條件、等差數(shù)列的基本性質等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在棱長為1的正方體ABCD-A1B1C1D1中.
(1)求證:AC⊥平面B1 BDD1
(2)求二面角A-B1D1-A1的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在空間幾何體PQ-ABC中,PA⊥平面ABC,平面QBC⊥平面ABC,AB=AC,QB=QC.
(1)求證:PA∥平面QBC;
(2)若PQ⊥平面QBC,試比較三棱錐Q-PBC與P-ABC的體積的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有5部各不相同的電話參加展覽,排成一行,其中有2部不同的電話來自同一個廠家,則此2部電話恰好相鄰的排法總數(shù)是
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sinx,x∈R的最小正周期是( 。
A、π
B、2π
C、4π
D、
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若棱長為3的正方體的頂點都在同一球面上,則該球的表面積為(  )
A、27πB、9πC、3πD、π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3+ax2-a2x-1,二次函數(shù)g(x)=ax2-x-1
(1)若a<0,求f(x)的單調(diào)區(qū)間;
(2)當函數(shù)y=f(x)與y=g(x)的圖象只有一個公共點且g(x)存在最大值時,記g(x)的最大值為h(a),求函數(shù)h(a)的解析式;
(3)若函數(shù)f(x)與g(x)在區(qū)間(a-2,a)內(nèi)均為增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1-a+lnx
x
,a>0.
(1)求f(x)的極值;
(2)當a=1時,若不等式f(x)-k<0在(0,+∞)上恒成立,求k的取值范圍;
(3)已知x1>0,x2>0,且x1+x2<e,求證:x1+x2>x1x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2,1)
b
=(1,x)
,若
a
b
,則實數(shù)x的值為(  )
A、-2B、-1C、0D、1

查看答案和解析>>

同步練習冊答案