【題目】如圖是一個(gè)半徑為2千米,圓心角為的扇形游覽區(qū)的平面示意圖是半徑上一點(diǎn),是圓弧上一點(diǎn),且.現(xiàn)在線段,線段及圓弧三段所示位置設(shè)立廣告位,經(jīng)測算廣告位出租收入是:線段處每千米為元,線段及圓弧處每千米均為元.設(shè)弧度,廣告位出租的總收入為元.

(1)求關(guān)于的函數(shù)解析式,并指出該函數(shù)的定義域;

(2)試問:為何值時(shí),廣告位出租的總收入最大?并求出其最大值.

【答案】(1);(2)當(dāng)時(shí),廣告位出租的總收入最大,最大值為元.

【解析】

1)根據(jù)題意,利用正弦定理求得OC的值,再求弧長DB,求出函數(shù)y的解析式,寫出x的取值范圍;

2)求函數(shù)y的導(dǎo)數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求出函數(shù)的最值和對應(yīng)x的值.

(1)因?yàn)?/span>,所以.

中,,,.

由正弦定理,得

,.

又圓弧長為,

所以

.

(2)記,

,

,得.

當(dāng)變化時(shí),,的變化如下表:

所以處取得極大值,這個(gè)極大值就是最大值,即.

故當(dāng)時(shí),廣告位出租的總收入最大,最大值為元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 過點(diǎn),離心率為.

1求橢圓的方程;

2, 是過點(diǎn)且互相垂直的兩條直線,其中交圓, 兩點(diǎn), 交橢圓于另一個(gè)點(diǎn),求面積取得最大值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種設(shè)備隨著使用年限的增加,每年的維護(hù)費(fèi)相應(yīng)增加現(xiàn)對一批該設(shè)備進(jìn)行調(diào)查,得到這批設(shè)備自購入使用之日起,前五年平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用大致如表:

年份

1

2

3

4

5

維護(hù)費(fèi)萬元

y關(guān)于t的線性回歸方程;

若該設(shè)備的價(jià)格是每臺(tái)5萬元,甲認(rèn)為應(yīng)該使用滿五年換一次設(shè)備,而乙則認(rèn)為應(yīng)該使用滿十年換一次設(shè)備,你認(rèn)為甲和乙誰更有道理?并說明理由.

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)At,1)為函數(shù)yax2+bx+4a,b為常數(shù),且a≠0)與yx圖象的交點(diǎn).

1)求t;

2)若函數(shù)yax2+bx+4的圖象與x軸只有一個(gè)交點(diǎn),求a,b;

3)若1≤a≤2,設(shè)當(dāng)x≤2時(shí),函數(shù)yax2+bx+4的最大值為m,最小值為n,求mn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)上單調(diào)遞減,求實(shí)數(shù)的取值范圍;

2)是否存在實(shí)數(shù),使得上的值域恰好是?若存在,求出實(shí)數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)2017年的純利潤為500萬元,因設(shè)備老化等原因,企業(yè)的生產(chǎn)能力逐年下降,若不能進(jìn)行技術(shù)改造,預(yù)測從2018年起每年比上一年純利潤減少20萬元,2018年初該企業(yè)一次性投入資金600萬元進(jìn)行技術(shù)改造,預(yù)測在未扣除技術(shù)改造資金的情況下,第年(以2018年為第一年)的利潤為萬元(為正整數(shù)).

(1)設(shè)從今年起的前年,若該企業(yè)不進(jìn)行技術(shù)改造的累計(jì)純利潤為萬元,進(jìn)行技術(shù)改造后的累計(jì)純利潤為萬元(須扣除技術(shù)改造資金),求,的表達(dá)式;

(2)依上述預(yù)測,從2018年起該企業(yè)至少經(jīng)過多少年,進(jìn)行技術(shù)改造后的累計(jì)利潤超過不進(jìn)行技術(shù)改造的累計(jì)純利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為常數(shù)).

(1)若函數(shù)與函數(shù)處有相同的切線,求實(shí)數(shù)的值;

2)若,且,證明: ;

3)若對任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)Px0,y0)(x0)在橢圓Cab0)上,若點(diǎn)M為橢圓C的右頂點(diǎn),且POPM O為坐標(biāo)原點(diǎn)),則橢圓C的離心率e的取值范圍是

A. 0, B. (0,1 C. ,1 D. 0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的奇函數(shù)滿足, 為數(shù)列的前項(xiàng)和,且,則__________

查看答案和解析>>

同步練習(xí)冊答案