已知常數(shù)a>1,解不等式|logx|<|log(ax)|-2.

答案:
解析:

[解析]

原不等式可化為|logx|<|1+2logx|-2.

(Ⅰ)當logx≥0,原不等式為logx<2logx-1.

即logx>1.∵ a>1∴x>a.

(Ⅱ)當-<logx<0時,原不等式為-logx<2logx-1.

即3logx>1,logx>.注意到logx<0,無解.

(Ⅲ)當logx≤-時,原不等式為-logx<-2logx-3.

即logx<-3.∵a>1,∴0<x<

綜上討論,并經(jīng)檢驗,原不等式的解集為:{x|0<x<或x>a}


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)定理:函數(shù)g(x)=ax+
b
x
(a、b是正常數(shù))在區(qū)間(0,
b
a
)
上為減函數(shù),在區(qū)間(
b
a
,+∞)
上為增函數(shù).參考該定理,解決下面問題:是否存在實數(shù)m同時滿足以下兩個條件:①不等式f(x)-
m
2
>0
恒成立;②方程f(x)-m=0有解.若存在,試求出實數(shù)m的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cos2ωx-sin2ωx,sinωx)
b
=(
3
,2cosωx)
,設函數(shù)f(x)=
a
b
(x∈R)
的圖象關于直線x=
π
2
對稱,其中ω為常數(shù),且ω∈(0,1).
(Ⅰ)求函數(shù)f(x)的表達式;
(Ⅱ)若將y=f(x)圖象上各點的橫坐標變?yōu)樵瓉淼?span id="sh2f7t8" class="MathJye">
1
6
,再將所得圖象向右平移
π
3
個單位,縱坐標不變,得到y(tǒng)=h(x)的圖象,若關于x的方程h(x)+k=0在區(qū)間[0,
π
2
]
上有且只有一個實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-ax2-bx+a2,x∈R,a,b為常數(shù).
(1)若函數(shù)f(x)在x=1處有極值10,求實數(shù)a,b的值;
(2)若a=0時,方程f(x)=2在x∈[-4,4]上恰有3個不相等的實數(shù)解,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:東北育才學校07屆高三一輪復習單元測試卷、數(shù)學(數(shù)列) 題型:044

解答題

在公差為的等差數(shù)列{an}和公比為q的等比數(shù)列{bn}中,已知,

(1)

求數(shù)列{an}與{bn}的通項公式;

(2)

是否存在常數(shù)a,b,使得對于一切正整數(shù)n,都有成立?若存在,求出常數(shù)a和b,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知向量
a
=(cos2ωx-sin2ωx,sinωx)
,
b
=(
3
,2cosωx)
,設函數(shù)f(x)=
a
b
(x∈R)
的圖象關于直線x=
π
2
對稱,其中ω為常數(shù),且ω∈(0,1).
(Ⅰ)求函數(shù)f(x)的表達式;
(Ⅱ)若將y=f(x)圖象上各點的橫坐標變?yōu)樵瓉淼?span mathtag="math" >
1
6
,再將所得圖象向右平移
π
3
個單位,縱坐標不變,得到y(tǒng)=h(x)的圖象,若關于x的方程h(x)+k=0在區(qū)間[0,
π
2
]
上有且只有一個實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案