【題目】等腰△ABC中,底邊BC=2 ,| ﹣t |的最小值為 | |,則△ABC的面積為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某飛行器在4千米高空飛行,從距著陸點(diǎn)A的水平距離10千米處開始下降,已知下降飛行軌跡為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為( )
A.y= ﹣ x
B.y= x3﹣ x
C.y= x3﹣x
D.y=﹣ x3+ x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n和為Sn , a1=1,Sn=nan﹣2n2+2n(n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列,并分別寫出an和Sn關(guān)于n的表達(dá)式;
(2)是否存在自然數(shù)n,使得S1+ + +…+ +2n=1124?若存在,求出n的值; 若不存在,請說明理由;
(3)設(shè)cn= (n∈N*),Tn=c1+c2+c3+…+cn(n∈N*),若不等式Tn> (m∈Z),對n∈N*恒成立,求m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)結(jié)論中正確的個(gè)數(shù)是( ) ①“x2+x﹣2>0”是“x>1”的充分不必要條件
②命題:“x∈R,sinx≤1”的否定是“x0∈R,sinx0>1”.
③“若x= ,則tanx=1,”的逆命題為真命題;
④若f(x)是R上的奇函數(shù),則f(log32)+f(log23)=0.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程 (φ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是2ρsin(θ+ )=3 ,射線OM:θ= 與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=xex .
(1)求f(x)的極值;
(2)k×f(x)≥ x2+x在[﹣1,+∞)上恒成立,求k值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們把焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對“相關(guān)曲線”.已知F1 , F2是一對相關(guān)曲線的焦點(diǎn),P是橢圓和雙曲線在第一象限的交點(diǎn),當(dāng)∠F1PF2=60°時(shí),這一對相關(guān)曲線中橢圓的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,其中a>1
(1)當(dāng)a=2時(shí),求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知關(guān)于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,城市缺水問題較為突出.某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)合理的居民月用水量標(biāo)準(zhǔn)x(噸),用水量不超過 x 的部分按平價(jià)收費(fèi),超出 x 的部分按議價(jià)收費(fèi).為了了解全市居民用水量的分布情況,通過抽樣,獲得了 100 位居民某年的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中 a 的值;
(Ⅱ)若該市政府希望使 85%的居民每月的用水量不超過標(biāo)準(zhǔn) x(噸),估計(jì) x 的值,并說明理由;
(Ⅲ)已知平價(jià)收費(fèi)標(biāo)準(zhǔn)為 4 元/噸,議價(jià)收費(fèi)標(biāo)準(zhǔn)為 8元/噸.當(dāng) x=3時(shí),估計(jì)該市居民的月平均水費(fèi).(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com