選修4-4:參數(shù)方程選講
已知平面直角坐標(biāo)系xOy,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,P點(diǎn)的極坐標(biāo)為(2
3
,
π
6
)
,曲線C的極坐標(biāo)方程為ρ2+2
3
ρsinθ=1

(Ⅰ)寫出點(diǎn)P的直角坐標(biāo)及曲線C的普通方程;
(Ⅱ)若Q為C上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線l:
x=3+2t
y=-2+t
(t為參數(shù))距離的最小值.
考點(diǎn):參數(shù)方程化成普通方程,簡(jiǎn)單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:(1)利用x=ρcosθ,y=ρsinθ即可得出;
(2)利用中點(diǎn)坐標(biāo)公式、點(diǎn)到直線的距離公式及三角函數(shù)的單調(diào)性即可得出,
解答:解 (1)∵P點(diǎn)的極坐標(biāo)為(2
3
π
6
)
,
xP=2
3
cos
π
6
=2
3
×
3
2
=3,yP=2
3
sin
π
6
=2
3
×
1
2
=
3

∴點(diǎn)P的直角坐標(biāo)(3,
3
)

把ρ2=x2+y2,y=ρsinθ代入ρ2+2
3
ρsinθ=1
可得x2+y2+2
3
y=1
,即x2+(y+
3
)2=4

∴曲線C的直角坐標(biāo)方程為x2+(y+
3
)2=4

(2)曲線C的參數(shù)方程為
x=2cosθ
y=-
3
+2sinθ
(θ為參數(shù)),直線l的普通方程為x-2y-7=0
設(shè)Q(2cosθ,-
3
+2sinθ)
,則線段PQ的中點(diǎn)M(
3
2
+cosθ,sinθ)

那么點(diǎn)M到直線l的距離d=
|
3
2
+cosθ-2sinθ-7|
12+22
=
|cosθ-2sinθ-
11
2
|
5
=
5
sin(θ-φ)+
11
2
5
.
-
5
+
11
2
5
=
11
5
10
-1

∴點(diǎn)M到直線l的最小距離為
11
5
10
-1
點(diǎn)評(píng):本題考查了極坐標(biāo)與直角坐標(biāo)的互化、中點(diǎn)坐標(biāo)公式、點(diǎn)到直線的距離公式、兩角和差的正弦公式、三角函數(shù)的單調(diào)性等基礎(chǔ)知識(shí)與基本技能方法,考查了計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的參數(shù)方程為
x=2t
y=1+4t
(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=2
2
sin(θ+
π
4
),則直線l被曲線C截得的弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為
x=
3
cosα
y=sinα
(α為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐 標(biāo) 系,曲 線C2的極坐標(biāo)方程為ρsin(θ+
π
4
)=4
2

(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程.
(2)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,已知直線l上兩點(diǎn)M,N的極坐標(biāo)分別為(2,0),(
2
3
3
π
2
)
,圓C的參數(shù)方程為
x=2+2cosθ
y=-
3
+2sinθ
(θ為參數(shù)).①設(shè)P為線段MN的中點(diǎn),求直線OP的平面直角坐標(biāo)方程;②判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程是
x=
2
2
t
y=
2
2
t+4
2
(t是參數(shù)),以原點(diǎn)O為極點(diǎn),Ox為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為p=2cos(θ+
π
4
).
(1)求圓心C的直角坐標(biāo);
(2)由直線l上的點(diǎn)向圓C引切線,求切線長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C1
x=-4+cosα
y=3+sinα
,(α為參數(shù)),C2
x=8cosθ
y=3sinθ
,(θ為參數(shù))
(Ⅰ)化C1,C2的方程為普通方程,并說(shuō)明它們分別表示什么曲線;
(Ⅱ)若C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)為α=
π
2
,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3
x=3+2t
y=-2+t
,(t為參數(shù))距離的最小值及此時(shí)Q點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選修4--4:坐標(biāo)系與參數(shù)方程)在直角坐標(biāo)系xoy中,曲線M的參數(shù)方程為
x=sinθ+cosθ
y=sin2θ
(θ為參數(shù)),若以該直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線N的極坐標(biāo)方程為:ρsin(θ+
π
4
)=
2
2
t(其中t為常數(shù)).
(1)求曲線M的普通方程;
(2)若曲線N與曲線M只有一個(gè)公共點(diǎn),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的非負(fù)半軸重合.若曲線C1的方程為ρsin(θ-
π
6
)+2
3
=0,曲線C2的參數(shù)方程為
x=cosθ
y=sinθ

(Ⅰ)將C1的方程化為直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)Q為C2上的動(dòng)點(diǎn),P為C2上的動(dòng)點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=ax2+bx與函數(shù)y=xa+b(a≠0),在同一坐標(biāo)系中的圖象可能為(  )
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案