【題目】定義在上的函數(shù)對任意的,滿足條件: ,且當時, .
(1)求的值;
(2)證明:函數(shù)是上的單調增函數(shù);
(3)解關于的不等式.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,,為的中點.
(1)若,求證:;
(2)若,且,點在線段上,試確定點的位置,使二面角大小為,并求出的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩企業(yè)生產同一種型號零件,按規(guī)定該型號零件的質量指標值落在內為優(yōu)質品.從兩個企業(yè)生產的零件中各隨機抽出了500件,測量這些零件的質量指標值,得結果如下表:
甲企業(yè):
乙企業(yè):
(1)已知甲企業(yè)的500件零件質量指標值的樣本方差,該企業(yè)生產的零件質量指標值服從正態(tài)分布,其中近似為質量指標值的樣本平均數(shù)(注:求時,同一組數(shù)據(jù)用該區(qū)間的中點值作代表),近似為樣本方差,試根據(jù)該企業(yè)的抽樣數(shù)據(jù),估計所生產的零件中,質量指標值不低于71.92的產品的概率.(精確到0.001)
(2)由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并問能否在犯錯誤的概率不超過0.01的前提下,認為“兩個分廠生產的零件的質量有差異”.
附注:
參考數(shù)據(jù): ,
參考公式: , ,
.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近幾年來,我國許多地區(qū)經常出現(xiàn)干旱現(xiàn)象,為抗旱經常要進行人工降雨,現(xiàn)由天氣預報得知,某地在未來5天的指定時間的降雨概率是:前3天均為,后2天均為,5天內任何一天的該指定時間沒有降雨,則在當天實行人工降雨,否則,當天不實施人工降雨.
(1)求至少有1天需要人工降雨的概率;
(2)求不需要人工降雨的天數(shù)的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了弘揚民族文化,某校舉行了“我愛國學,傳誦經典”考試,并從中隨機抽取了100名考生的成績(得分均為整數(shù),滿足100分)進行統(tǒng)計制表,其中成績不低于80分的考生被評為優(yōu)秀生,請根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計概率,回答下列問題.
分組 | 頻數(shù) | 頻率 |
5 | 0.05 | |
0.20 | ||
35 | ||
25 | 0.25 | |
15 | 0.15 | |
合計 | 100 | 1.00 |
(1)求的值及隨機抽取一考生恰為優(yōu)秀生的概率;
(2)按頻率分布表中的成績分組,采用分層抽樣抽取20人參加學校的“我愛國學”宣傳活動,求其中優(yōu)秀生的人數(shù);
(3)在第(2)問抽取的優(yōu)秀生中指派2名學生擔任負責人,求至少一人的成績在的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個盒子內裝有8張卡片,每張卡片上面寫著1個數(shù)字,這8個數(shù)字各不相同,且奇數(shù)有3個,偶數(shù)有5個.每張卡片被取出的概率相等.
(Ⅰ)如果從盒子中一次隨機取出2張卡片,并且將取出的2張卡片上的數(shù)字相加得到一個新數(shù),求所得新數(shù)是偶數(shù)的概率;
(Ⅱ)現(xiàn)從盒子中一次隨機取出1張卡片,每次取出的卡片都不放回盒子,若取出的卡片上寫著的數(shù)是偶數(shù)則停止取出卡片,否則繼續(xù)取出卡片.設取出了次才停止取出卡片,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在等腰直角三角形中, , 為的中點,點在上,且,現(xiàn)沿將折起到的位置,使,點在上,且.
(1)求證: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間有關系,某農科所對此關系進行了調查分析,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù) | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出關于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(參考公式: , )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有4個人參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇,為增加趣味性,約定:每個人通過擲一枚質地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.
(1) 求出4個人中恰有2個人去 參加甲游戲的概率;
(2)求這4個人中去參加甲游戲人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用分別表示這4個人中去參加甲、乙游戲的人數(shù),記,求隨機變量的分布列與數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com