(本小題滿分14分)如圖所示,在四棱錐中,平面,,
,,是的中點(diǎn).
(1)證明:平面;
(2)若,,,求二面角的正切值.
解:(1)證明:∵平面,∴。
∵,是的中點(diǎn)
∴為△中邊上的高,
∴。
∵,
∴平面!6分
(2)方法1:延長(zhǎng)DA、CB相交于點(diǎn)F,連接PF、DB
過(guò)點(diǎn)P作PE⊥BC,垂足為E,連接HE
由(1)知平面,則PH⊥BC
又∵PE∩PH=P,∴BC⊥平面PHE,∴BC⊥HE
∴∠PEH就是所求二面角P-BC-D的平面角……………9分
在△FDC中,∵PH=1,AD=1,∴PD=
∵平面,,∴CD⊥平面PAD
∴CD⊥PD,∵PC=,∴CD=4
∵,∴AB=2,∴BD=,
∴AB是△FCD的中位線,F(xiàn)D=CD
∴BD⊥CF
∴HE=
∵PH=1,∴……………14分
方法2:由(1)知平面,如圖建立空間直角坐標(biāo)系.
∵PH=1,AD=1,∴PD=
∵平面,,∴CD⊥平面PAD
∴CD⊥PD,∵PC=,∴CD=4
∴
設(shè)平面BCD、平面PBC的法向量分別為
則,設(shè)
∵,令,則
,設(shè)二面角P-BC-D為,
則,故
【解析】本試題主要是考查了線面垂直和二面角的求解的綜合運(yùn)用。
(1)因平面,∴!,是的中點(diǎn)
∴為△中邊上的高,∴!,
∴平面
(2)延長(zhǎng)DA、CB相交于點(diǎn)F,連接PF、DB過(guò)點(diǎn)P作PE⊥BC,垂足為E,連接HE
由(1)知平面,則PH⊥BC又∵PE∩PH=P,∴BC⊥平面PHE,∴BC⊥HE
∴∠PEH就是所求二面角P-BC-D的平面角,然后利用解三角形得到結(jié)論。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷(xiāo)售價(jià)格及銷(xiāo)售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷(xiāo)售價(jià)格(單位:元)為,第天的銷(xiāo)售量為,已知該商品成本為每件25元.
(Ⅰ)寫(xiě)出銷(xiāo)售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤(rùn);
(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com