分析 先根據(jù)拋物線方程求出焦點(diǎn)坐標(biāo),進(jìn)而可設(shè)出直線方程,然后聯(lián)立直線與拋物線消去y得到關(guān)于x的一元二次方程,根據(jù)韋達(dá)定理得到兩根之和與兩根之積,再由兩點(diǎn)間的距離公式表示出|AB|,將得到的兩根之和與兩根之積即可得到答案.
解答 解:y=4x2的焦點(diǎn)為(0,$\frac{1}{16}$),設(shè)過焦點(diǎn)(0,$\frac{1}{16}$)的直線為y=kx+$\frac{1}{16}$,
則令kx+$\frac{1}{16}$=4x2,即64x2-16kx-1=0,由韋達(dá)定理得x1+x2=$\frac{1}{4}$k,x1x2=-$\frac{1}{64}$
y1=kx1+$\frac{1}{16}$,y2=kx2+$\frac{1}{16}$,
所以y1+y2=k(x1+x2)+$\frac{1}{8}$=$\frac{1}{4}$k2+$\frac{1}{8}$=2,所以k2=$\frac{15}{2}$,
所以|AB|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{1+\frac{15}{2}}$•$\sqrt{\frac{1}{16}•\frac{15}{2}+4•\frac{1}{64}}$=$\frac{17}{8}$.
故答案為:$\frac{17}{8}$.
點(diǎn)評(píng) 本題主要考查拋物線的基本性質(zhì)和兩點(diǎn)間的距離公式的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | -$\frac{1}{5}$ | C. | $\frac{1}{5}$ | D. | -$\frac{1}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z) | B. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z) | ||
C. | [kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z) | D. | [kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com