【題目】設(shè)函數(shù)f(x)=|2x﹣1|
(1)解關(guān)于x的不等式f(2x)≤f(x+1)
(2)若實(shí)數(shù)a,b滿足a+b=2,求f(a2)+f(b2)的最小值.
【答案】
(1)解:|4x﹣1|≤|2x+1|16x2﹣8x+1≤4x2+4x+112x2﹣12x≤0,
解得x∈[0,1],故原不等式的解集為[0,1]
(2)解:f(a2)+f(b2)=|2a2﹣1|+|2b2﹣1|≥|2(a2+b2)﹣2|,
由柯西不等式:2(a2+b2)=(12+12)(a2+b2)≥(a+b)2=4.
從而2(a2+b2)﹣2≥2,即f(a2)+f(b2)≥2,取等條件為a=b=1.
故f(a2)+f(b2)的最小值為2
【解析】(1)去掉絕對值符號,轉(zhuǎn)化求解不等式即可.(2)利用已知條件化簡所求的表達(dá)式,通過柯西不等式求解即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的最值及其幾何意義和絕對值不等式的解法的相關(guān)知識可以得到問題的答案,需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲;含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={1,2},B={x|ax-2=0},若BA,則實(shí)數(shù)a的所有可能值構(gòu)成的集合為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將編號為1,2,3,4,5,6的六個小球放入編號為1,2,3,4,5,6的六個盒子,每個盒子放一個小球,若有且只有三個盒子的編號與放入的小球編號相同,則不同的放法總數(shù)是( )
A.40
B.60
C.80
D.100
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用抽簽法進(jìn)行抽樣有以下及格步驟:
①把號碼寫在形狀、大小相同的號簽上(號簽可以用小球、卡片、紙條制作)
②將總體中的個體編號;
③從這容器中逐個不放回地抽取號簽,將取出號簽所對應(yīng)的個體作為樣本;
④將這些號簽放在一個容器內(nèi)并攪拌均勻;
這些步驟的先后順序應(yīng)為 ( )
A. ②①④③ B. ②③④① C. ①③④② D. ①④②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在復(fù)平面內(nèi),復(fù)數(shù)3-4i,i(2+i)對應(yīng)的點(diǎn)分別是A,B,則線段AB的中點(diǎn)C對應(yīng)的復(fù)數(shù)為( )
A.-2+2i B.2-2i
C.-1+i D.1-i
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}中,a3+a8=22,a6=7,則a5的值為 ( )
A. 10 B. 15 C. 20 D. 40
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等比數(shù)列{an}中,a1=2,a8=4,函數(shù)f(x)=x(x﹣a1)(x﹣a2)…(x﹣a8),則f′(0)=( )
A.26
B.29
C.212
D.215
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域在R上的函數(shù)f(x)=|x+1|+|x﹣2|的最小值為a.
(1)求a的值;
(2)若p,q,r為正實(shí)數(shù),且p+q+r=a,求證:p2+q2+r2≥3.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com