【題目】某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績是否與性別有關(guān),先統(tǒng)計本校高三年級每個學(xué)生一學(xué)期數(shù)學(xué)成績平均分(采用百分制),剔除平均分在40分以下的學(xué)生后,共有男生300名,女生200名.現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績分為6組,得到如下所示頻數(shù)分布表.

分數(shù)段

[40,50)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

3

9

18

15

6

9

6

4

5

10

13

2

(1)估計男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點值作代表),從計算結(jié)果看,數(shù)學(xué)成績與性別是否有關(guān);

(2)規(guī)定80分以上為優(yōu)分(含80分),請你根據(jù)已知條件作出2×2列聯(lián)表并判斷是否有90%以上的把握認為“數(shù)學(xué)成績與性別有關(guān)”.

優(yōu)分

非優(yōu)分

合計

男生

女生

附表及公式:

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

.

【答案】(1)從男、女生各自的平均分來看,并不能判斷數(shù)學(xué)成績與性別有關(guān);

(2)

優(yōu)分

非優(yōu)分

合計

男生

15

45

60

女生

15

25

40

合計

30

70

100

沒有90%以上的把握認為“數(shù)學(xué)成績與性別有關(guān)”.

【解析】

(1)求出平均分,觀察男生與女生平均分大小關(guān)系即可;

(2)由分數(shù)段內(nèi)學(xué)生人數(shù),填寫列聯(lián)表,由計算公式求出K2,與附表中2.706比較即可得出結(jié)論.

(1) =45×0.05+55×0.15+65×0.3+75×0.25+85×0.1+95×0.15=71.5,

=45×0.15+55×0.1+65×0.125+75×0.25+85×0.325+95×0.05=71.5,

從男、女生各自的平均分來看,并不能判斷數(shù)學(xué)成績與性別有關(guān).

(2)由頻數(shù)分布表可知:在抽取的100名學(xué)生中,“男生組”中的優(yōu)分有15人,“女生組”中的優(yōu)分有15人,據(jù)此可得2×2列聯(lián)表如下:

優(yōu)分

非優(yōu)分

合計

男生

15

45

60

女生

15

25

40

合計

30

70

100

可得K2≈1.79,

因為1.79<2.706,所以沒有90%以上的把握認為數(shù)學(xué)成績與性別有關(guān)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題對任意實數(shù),不等式恒成立;命題方程表示焦點在軸上的雙曲線.

(1)若命題為真命題,求實數(shù)的取值范圍;

(2)若命題:為真命題,且為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一同學(xué)在電腦中打出若干個圈:○●○○●○○○●○○○○●○○○○○●若將此若干個圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前2012個圈中的●的個數(shù)是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為(其中α為參數(shù)),曲線C2:(x﹣1)2+y2=1,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.

(1)求曲線C1的普通方程和曲線C2的極坐標方程;

(2)若射線θ=(ρ>0)與曲線C1,C2分別交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記函數(shù)的定義域為, )的定義域為.

(1)求

(2)若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G為AD中點,F(xiàn)是CE的中點.

(1)證明:BF∥平面ACD;
(2)求平面BCE與平面ACD所成銳二面角的大小;
(3)求點G到平面BCE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機詢問110名性別不同的大學(xué)生是否愛好某項運動,得到如下的列聯(lián)表:

列聯(lián)表算得參照附表,得到的正確結(jié)論是(  ).

A. 在犯錯誤的概率不超過0.01的前提下認為愛好該項運動與性別有關(guān)

B. 在犯錯誤的概率不超過0.01的前提下認為愛好該項運動與性別無關(guān)

C. 在犯錯誤的概率不超過0.001的前提下,認為愛好該項運動與性別有關(guān)

D. 在犯錯誤的概率不超過0.001的前提下,認為愛好該項運動與性別無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題:①命題,則的逆否命題為假命題:

②命題,則的否命題是,則”;

③若為真命題,為假命題,則為真命題,為假命題;

④函數(shù)有極值的充要條件是 .

其中正確的個數(shù)有(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】始于2007年初的美國次貸危機,至2008年中期,已經(jīng)演變?yōu)槿蚪鹑谖C.受此影響,國際原油價格從20087月每桶最高的147美元開始大幅下跌,9月跌至每桶97美元.你能求出國際原油價格7月到9月之間平均每月下降的百分比嗎?若按此計算,到什么時間跌至谷底(即每桶34美元)?

查看答案和解析>>

同步練習(xí)冊答案