【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性.
(2)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍.
【答案】(1)答案見(jiàn)詳解;(2)
【解析】
(1)計(jì)算,討論以及,然后根據(jù)的符號(hào)得出原函數(shù)的單調(diào)性.
(2)根據(jù)(1)的結(jié)果,利用函數(shù)的極值的符號(hào),可得結(jié)果.
(1)函數(shù)的定義域?yàn)?/span>
由,
所以
由,
當(dāng)時(shí),則
所以函數(shù)在單調(diào)遞增
當(dāng)時(shí),
令,則或
令,則
所以函數(shù)在單調(diào)遞增,在單調(diào)遞減
當(dāng)時(shí)
令,則或
令,則
所以函數(shù)在單調(diào)遞增,在單調(diào)遞減
(2)由(1)可知
當(dāng)時(shí),
若時(shí),;若時(shí),
所以函數(shù)在單調(diào)遞減,在單調(diào)遞增
且,由函數(shù)有兩個(gè)零點(diǎn)
所以
當(dāng)時(shí),函數(shù)在單調(diào)遞增,不符合題意
當(dāng)時(shí),
函數(shù)在單調(diào)遞增,在單調(diào)遞減
函數(shù)的極大值為
令
則,由,所以
所以在單調(diào)遞增,
所以
故函數(shù)有1個(gè)零點(diǎn),不符合題意
當(dāng)時(shí),
函數(shù)在單調(diào)遞增,在單調(diào)遞減
函數(shù)的極大值為
所以函數(shù)有1個(gè)零點(diǎn),不符合題意
綜上所述:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著生活水平的提高和人們對(duì)健康生活的重視,越來(lái)越多的人加入到健身運(yùn)動(dòng)中.國(guó)家統(tǒng)計(jì)局?jǐn)?shù)據(jù)顯示,2019年有4億國(guó)人經(jīng)常參加體育鍛煉.某健身房從參與健身的會(huì)員中隨機(jī)抽取100人,對(duì)其每周參與健身的天數(shù)和2019年在該健身房所有消費(fèi)金額(單位:元)進(jìn)行統(tǒng)計(jì),得到以下統(tǒng)計(jì)表及統(tǒng)計(jì)圖:
平均每周健身天數(shù) | 不大于2 | 3或4 | 不少于5 |
人數(shù)(男) | 20 | 35 | 9 |
人數(shù)(女) | 10 | 20 | 6 |
若某人平均每周進(jìn)行健身天數(shù)不少于5,則稱其為“健身達(dá)人”.該健身房規(guī)定消費(fèi)金額不多于1600元的為普通會(huì)員,超過(guò)1600元但不超過(guò)3200元的為銀牌會(huì)員,超過(guò)3200元的為金牌會(huì)員.
(1)已知金牌會(huì)員都是健身達(dá)人,現(xiàn)從健身達(dá)人中隨機(jī)抽取2人,求他們均是金牌會(huì)員的概率;
(2)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為性別和是否為“健身達(dá)人”有關(guān)系?
(3)該健身機(jī)構(gòu)在2019年年底針對(duì)這100位消費(fèi)者舉辦一次消費(fèi)返利活動(dòng),現(xiàn)有以下兩種方案:
方案一:按分層抽樣從普通會(huì)員、銀牌會(huì)員和金牌會(huì)員中共抽取25位“幸運(yùn)之星”,分別給予188元,288元,888元的幸運(yùn)獎(jiǎng)勵(lì);
方案二:每位會(huì)員均可參加摸獎(jiǎng)游戲,游戲規(guī)則如下:摸獎(jiǎng)箱中裝有5張形狀大小完全一樣的卡片,其中3張印跑步機(jī)圖案、2張印動(dòng)感單車圖案,有放回地摸三次卡片,每次只能摸一張,若摸到動(dòng)感單車的總數(shù)為2,則獲得100元獎(jiǎng)勵(lì),若摸到動(dòng)感單車的總數(shù)為3,則獲得200元獎(jiǎng)勵(lì),其他情況不給予獎(jiǎng)勵(lì).規(guī)定每個(gè)普通會(huì)員只能參加1次摸獎(jiǎng)游戲,每個(gè)銀牌會(huì)員可參加2次摸獎(jiǎng)游戲,每個(gè)金牌會(huì)員可參加3次摸獎(jiǎng)游戲(每次摸獎(jiǎng)結(jié)果相互獨(dú)立).
請(qǐng)你比較該健身房采用哪一種方案時(shí),在此次消費(fèi)返利活動(dòng)中的支出較少,并說(shuō)明理由.
附:,其中為樣本容量.
0.50 | 0.25 | 0.10 | 0.05 | 0.010 | 0.005 | |
0.455 | 1.323 | 2.706 | 3.841 | 6.636 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在多邊形中,四邊形為等腰梯形,,,,四邊形為直角梯形,,.以為折痕把等腰梯形折起,使得平面平面,如圖2所示.
(1)證明:平面.
(2)求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】企業(yè)為了監(jiān)控某種零件的一條流水生產(chǎn)線的產(chǎn)品質(zhì)量,檢驗(yàn)員從該生產(chǎn)線上隨機(jī)抽取100個(gè)零件,測(cè)量其尺寸(單位:)并經(jīng)過(guò)統(tǒng)計(jì)分析,得到這100個(gè)零件的平均尺寸為10,標(biāo)準(zhǔn)差為0.5.企業(yè)規(guī)定:若,該零件為一等品,企業(yè)獲利20元;若且,該零件為二等品,企業(yè)獲利10元;否則,該零件為不合格品,企業(yè)損失40元.
(1)在某一時(shí)刻內(nèi),依次下線10個(gè)零件,如果其中出現(xiàn)了不合格品,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過(guò)程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查若這10個(gè)零件的尺寸分別為9.6,10.5,9.8,10.1,10.7,9.4,10.9,9.5,10,10.9,則從這一天抽檢的結(jié)果看,是否需要對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查?
(2)將樣本的估計(jì)近似地看作總體的估計(jì)通過(guò)檢驗(yàn)發(fā)現(xiàn),該零件的尺寸服從正態(tài)分布.其中近似為樣本平均數(shù),近似為樣本方差.
(i)從下線的零件中隨機(jī)抽取20件,設(shè)其中為合格品的個(gè)數(shù)為,求的數(shù)學(xué)期望(結(jié)果保留整數(shù))
(ii)試估計(jì)生產(chǎn)10000個(gè)零件所獲得的利潤(rùn).
附:若隨機(jī)變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,右頂點(diǎn)為,離心率為.已知是拋物線的焦點(diǎn), 到拋物線的準(zhǔn)線的距離為.
(I)求橢圓的方程和拋物線的方程;
(II)設(shè)上兩點(diǎn), 關(guān)于軸對(duì)稱,直線與橢圓相交于點(diǎn)(異于點(diǎn)),直線與軸相交于點(diǎn).若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)對(duì)任意的,均有,則稱函數(shù)具有性質(zhì).
(1)判斷下面兩個(gè)函數(shù)是否具有性質(zhì),并說(shuō)明理由.①;②.
(2)若函數(shù)具有性質(zhì),且,求證:對(duì)任意有;
(3)在(2)的條件下,是否對(duì)任意均有.若成立給出證明,若不成立給出反例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)展學(xué)生社會(huì)法治服務(wù)項(xiàng)目,共設(shè)置了文明交通,社區(qū)服務(wù),環(huán)保宣傳和中國(guó)傳統(tǒng)文化宣講四個(gè)項(xiàng)目,現(xiàn)有該校的甲、乙、丙、丁4名學(xué)生,每名學(xué)生必須且只能選擇1項(xiàng).
(1)求恰有2個(gè)項(xiàng)目沒(méi)有被這4名學(xué)生選擇的概率;
(2)求“環(huán)保宣傳”被這4名學(xué)生選擇的人數(shù)的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,為正三角形,,,,點(diǎn)在線段的中點(diǎn),點(diǎn)為線段的中點(diǎn).
(1)在線段上是否存在點(diǎn),使得平面?若存在,指出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是拋物線的焦點(diǎn),過(guò)點(diǎn)且與坐標(biāo)軸不垂直的直線交拋物線于、兩點(diǎn),交拋物線的準(zhǔn)線于點(diǎn),其中,.過(guò)點(diǎn)作軸的垂線交拋物線于點(diǎn),直線交拋物線于點(diǎn).
(1)求的值;
(2)求四邊形的面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com