20.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{x+2,(x<0)}\\{{3^{x+1}},(x≥0)}\end{array}}$,則f[f(-2)]=(  )
A.3B.1C.0D.$\frac{1}{3}$

分析 由已知條件直接利用分段函數(shù)先求出f(-2),由此能求出f[f(-2)]的值.

解答 解:∵函數(shù)f(x)=$\left\{{\begin{array}{l}{x+2,(x<0)}\\{{3^{x+1}},(x≥0)}\end{array}}$,
∴f(-2)=-2+2=0,
f[f(-2)]=f(0)=3.
故選:A.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意分段函數(shù)的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

10.由1,2,3,4可以組成64個沒有重復數(shù)字的正整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.有五張卡片,它們的正、反面分別寫著0與1,2與3,4與5,6與7,8與9,將其中任意三張并排放在一起組成三位數(shù),共可組成多少個不同的三位數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.直線4x-3y-2=0與圓(x-3)2+(y+5)2=36的位置關(guān)系為( 。
A.相交B.相切C.相離D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設(shè)不等式組$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的平面區(qū)域為D,在區(qū)域D內(nèi)隨機取一個點,則此點到坐標原點的距離小于1的概率是(  )
A.$\frac{π}{4}$B.$\frac{π-2}{2}$C.$\frac{π}{6}$D.$\frac{4-π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.某大學餐飲中心對全校一年級新生飲食習慣進行抽樣調(diào)查,結(jié)果為:南方學生喜歡甜品的有60人,不喜歡甜品的有20人;北方學生喜歡甜品的有10人,不喜歡甜品的有10人.問有95%把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2>k00.100.050.010.005
k02.7063.8416.6357.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設(shè)函數(shù)f(x)=sin($\frac{π}{4}$x-$\frac{π}{3}$),若對任意x∈R都有f(x1)≤f(x)≤f(x2)成立,|x1-x2|的最小值為(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.方程$\sqrt{{x^2}+{{(y+3)}^2}}$+$\sqrt{{x^2}+{{(y-3)}^2}}$=10所表示曲線的圖形是( 。
A.B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.7個人排成一排.
(1)甲在左端,乙不在右端的排列有多少個?
(2)甲不在左端,乙不在右端的排列有多少個?
(3)甲在兩端,乙不在中間的排列有多少個?
(4)甲不在左端,乙不在右端,丙不在中間的排列有多少個?
(5)甲、乙都不在兩端的排列有多少個?

查看答案和解析>>

同步練習冊答案