【題目】某食品店為了了解氣溫對銷售量的影響,隨機記錄了該店1月份中5天的日銷售量(單位:千克)與該地當日最低氣溫(單位: )的數(shù)據(jù),如下表:

2

5

8

9

11

12

10

8

8

7

1)求出的回歸方程;

2)判斷之間是正相關還是負相關;若該地1月份某天的最低氣溫為6,請用所求回歸方程預測該店當日的營業(yè)額.

: 回歸方程, ,

【答案】(1);(2)負相關,估值9.56千克.

【解析】試題分析:

(1)根據(jù)公式求出線性回歸直線方程的系數(shù),可得方程;

2由回歸方程中的系數(shù)的正負確定正相關還是負相關,把代入回歸直線方程可得估值.

試題解析:

(1) ∵令,,

,

∴所求的回歸方程是

(2) 由之間是負相關;

代入回歸方程可預測該店當日的銷售額 (千克)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某市為了宣傳環(huán)保知識,舉辦了一次“環(huán)保知識知多少”的問卷調查活動(一人答一份).現(xiàn)從回收的年齡在歲的問卷中隨機抽取了份, 統(tǒng)計結果如下面的圖表所示.

(1)分別求出的值;

(2)從年齡在答對全卷的人中隨機抽取人授予“環(huán)保之星”,求年齡在的人中至少有人被授予“環(huán)保之星”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某四棱錐的三視圖如圖所示,該四棱錐外接球的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+1.
(1)判斷函數(shù)f(x)的奇偶性;
(2)用定義法證明函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某企業(yè)生產的某種產品中抽取100件,測量這些產品的一項質量指標值,由測量結果得如下頻數(shù)分布表:

質量指標值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

頻數(shù)

6

26

38

22

8

(1)作出這些數(shù)據(jù)的頻率分布直方圖;

(2)估計這種產品質量指標值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(3)根據(jù)以上抽樣調查數(shù)據(jù),能否認為該企業(yè)生產的這種產品符合“質量指標值不低于95的產品至少要占全部產品80%”的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x),g(x)分別是R上的奇函數(shù)、偶函數(shù),且滿足f(x)﹣g(x)=ex , 則有(
A.f(2)<f(3)<g(0)
B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3)
D.g(0)<f(2)<f(3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是公差不為零的等差數(shù)列,,且,成等比數(shù)列.

(1)求數(shù)列的通項;

(2)求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是函數(shù)圖象上的點,是雙曲線在第四象限這一分支上的動點,過點作直線,使其與雙曲線只有一個公共點,且與軸、軸分別交于點,另一條直線軸、軸分別交于點、

則(1)為坐標原點,三角形的面積為__________

(2)四邊形面積的最小值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,且
(1)求m的值;
(2)判斷f(x)在(0,+∞)上的單調性,并給予證明;
(3)求函數(shù)f(x)在區(qū)間[﹣5,﹣1]上的最值.

查看答案和解析>>

同步練習冊答案