2.如果關(guān)于x的一元二次不等式ax2+bx+c>0的解集為{x|x<-2或x>4},那么對(duì)于函數(shù)應(yīng)有( 。
A.f(5)<f(2)<f(-1)B.f(2)<f(5)<f(-1)C.f(-1)<f(2)<f(5)D.f(2)<f(-1)<f(5)

分析 確定f(-1)=f(3),函數(shù)在(1,+∞)上單調(diào)遞增,即可得出結(jié)論.

解答 解:∵關(guān)于x的一元二次不等式ax2+bx+c>0的解集為{x|x<-2或x>4},
∴a>0,函數(shù)的對(duì)稱軸為x=1,
∴f(-1)=f(3),函數(shù)在(1,+∞)上單調(diào)遞增,
∴f(2)<f(3)<f(5),
∴f(2)<f(-1)<f(5),
故選D.

點(diǎn)評(píng) 本題考查一元二次不等式的解法,考查函數(shù)的單調(diào)性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖(1),把棱長(zhǎng)為1的正方體沿平面AB1D1和平面A1BC1截去部分后,得到如圖(2)所示幾何體,該幾何體的體積為( 。
A.$\frac{3}{4}$B.$\frac{17}{24}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江西省南昌市高二文下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)y=f(x)在R上為奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x2﹣2x,則當(dāng)x<0時(shí),f(x)的解析式是( )

A.f(x)=﹣x(x+2) B.f(x)=x(x﹣2)

C.f(x)=﹣x(x﹣2) D.f(x)=x(x+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ex-k-x,(x∈R)
(1)當(dāng)k=0時(shí),若函數(shù)f(x)≥m在R上恒成立,求實(shí)數(shù)m的取值范圍;
(2)試判斷當(dāng)k>1時(shí),函數(shù)f(x)在(k,2k)內(nèi)是否存在零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)y=f(x)(x≠0)是奇函數(shù),且當(dāng)x∈(0,+∞)時(shí)是增函數(shù),若f(-1)=0,$f(a-\frac{1}{2})<0$,
(1)求f(1)的值;
(2)求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點(diǎn),且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若函數(shù)f(x)=loga(x3-2x)(a>0且a≠1)在區(qū)間(-$\sqrt{2}$,-1)內(nèi)恒有f(x)>0,則f(x)的單調(diào)遞減區(qū)間為( 。
A.(-∞,-$\frac{\sqrt{6}}{3}$),($\frac{\sqrt{6}}{3}$,+∞)B.(-$\sqrt{2}$,-$\frac{\sqrt{6}}{3}$),($\sqrt{2}$,+∞)C.(-$\sqrt{2}$,-$\frac{\sqrt{6}}{3}$),($\frac{\sqrt{6}}{3}$,+∞)D.(-$\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.?dāng)?shù)列{an}滿足a1=$\frac{4}{3},{a_{n+1}}-1={a_n}({a_n}-1),n∈{N^*}$且Sn=$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}$,則Sn的整數(shù)部分的所有可能值構(gòu)成的集合是{0,1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題$p:\frac{1}{a}>\frac{1}{4}$,命題q:?x∈R,ax2+ax+1>0,則p成立是q成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案