19.已知數(shù)列,首項a 1 =3且2a n+1=S n ?S n-1 (n≥2).

   (1)求證:{}是等差數(shù)列,并求公差;

   (2)求{a n }的通項公式;

   (3)數(shù)列{an }中是否存在自然數(shù)k0,使得當自然數(shù)k≥k 0時使不等式a k>a k+1對任意大于等于k的自然數(shù)都成立,若存在求出最小的k值,否則請說明理由.

19.分析:證為等差數(shù)列,即證d是常數(shù))。

解:⑴由已知當

    

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知{an}是首項為1的等比數(shù)列,Sn是{an}的前n項和,且9S3=S6,則數(shù)列{
1
an
}
的前5項和為( 。
A、
15
8
或5
B、
31
16
或5
C、
31
16
D、
15
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•東城區(qū)一模)已知{an}是首項為1,公比為q的等比數(shù)列,Pn=a1+a2
C
1
n
+a3
C
2
n
+…+an+1
C
n
n
(n∈N*,n>2),Qn=
C
0
n
+
C
2
n
+
C
4
n
+…+
C
m
n
,(其中m=2[
n
2
],[t]
表示t的最大整數(shù),如[2.5]=2).如果數(shù)列{
Pn
Qn
}
有極限,那么公比q的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•寶坻區(qū)一模)已知{an} 是首項為1的等比數(shù)列,且4a1,2a2,a3成等差數(shù)列,則數(shù)列{
1
an
}的前5項的和為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河北保定安新縣第一中學高三4月模擬考試數(shù)學試卷(解析版) 題型:解答題

已知數(shù)列,首項a 1 =3且2a n+1="S"  n?S n1 (n≥2).

(1)求證:{}是等差數(shù)列,并求公差;

(2)求{a n }的通項公式;

(3)數(shù)列{an }中是否存在自然數(shù)k0,使得當自然數(shù)k≥k 0時使不等式a k>a k+1對任意大于等于k的自然數(shù)都成立,若存在求出最小的k值,否則請說明理由.

 

查看答案和解析>>

同步練習冊答案