13.化簡$\sqrt{1+2sin5cos5}+\sqrt{1-2sin5cos5}$,得到(  )
A.-2sin5B.-2cos5C.2sin5D.2cos5

分析 由5的范圍可得sin5<0,cos5>0,且|sin5|>|cos5|,再由同角三角函數(shù)的基本關(guān)系式化簡整理得答案.

解答 解:∵$\frac{3π}{2}<5<\frac{7π}{4}$,∴sin5<0,cos5>0,且|sin5|>|cos5|,
∴$\sqrt{1+2sin5cos5}+\sqrt{1-2sin5cos5}$=$\sqrt{(sin5+cos5)^{2}}+\sqrt{(sin5-cos5)^{2}}$
=|sin5+cos5|+|sin5-cos5|=-sin5-cos5-sin5+cos5=-2sin5.
故選:A.

點評 本題考查三角函數(shù)的化簡求值,考查同角三角函數(shù)基本關(guān)系式的應用,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.在下列命題中:其中正確命題的個數(shù)為0
①若$\overrightarrow a$、$\overrightarrow b$共線,則$\overrightarrow a$、$\overrightarrow b$所在的直線平行;
②$\overrightarrow a$、$\overrightarrow b$所在的直線是異面直線,則$\overrightarrow a$、$\overrightarrow b$定不共面;
③若$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$三個向量兩兩共面,則$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$三個向量一定也共面;
④已知三個向量$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$,則空間任意一個向量$\overrightarrow p$總可以唯一表示為$\overrightarrow p=x\overrightarrow a+y\overrightarrow b+z\overrightarrow c$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設函數(shù)f(x)=-(x-1)2-blnx,其中b為常數(shù).
(1)當b>$\frac{1}{2}$時,判斷函數(shù)f(x)在定義域上的單調(diào)性;
(2)若函數(shù)f(x)的有極值點,求b的取值范圍及f(x)的極值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知等差數(shù)列{an}的前n項和為Sn,已知a2=3,S9=81.
(Ⅰ)求通項an;
(Ⅱ)記數(shù)列{$\frac{{S}_{n}}{n}$}的前n項和為Tn,數(shù)列{$\frac{1}{{T}_{n}}$}的前n項和為Un,求證:Un<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)f(x)=loga(5-ax)(a>0,a≠1)在[1,3]上是減函數(shù),則a的取值范圍是(  )
A.$[\frac{5}{3},+∞)$B.$(\frac{1}{5},1)$C.$(1,\frac{5}{3})$D.$(1,\frac{5}{3}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.下列四個命題:
(1)給定兩個命題p,q.若p是q的充分不必要條件,則¬p是¬q的必要不充分條件
(2)“(2x-1)x=0”的充分不必要條件是“x=0”.
(3)在△ABC中,“A=60°”是“cos A=$\frac{1}{2}$”的充分不必要條件.
(4)已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,x∈R),則“f(x)是奇函數(shù)”是“φ=$\frac{π}{2}$”的充分必要條件. 
 其中正確命題的序號是(1)(2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知點F(x,y)與兩定點M(-1,0),N(1,0)連線的斜率之積等于常數(shù)λ(λ≠0).
(1)求動點P的軌跡C的方程;
(2)試根據(jù)λ的取值情況討論軌跡C的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知直線l:3x+4y-1=0,圓C:(x+1)2+(y+1)2=r2,若圓上有且僅有兩個點到直線的距離為1,則圓C半徑r的取值范圍是$\frac{3}{5}$<r<$\frac{13}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在數(shù)列{an}中,a1=-$\frac{1}{2}$,2an=an-1-n-1(n≥2,n∈N+),設bn=an+n.
(Ⅰ)證明:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)求數(shù)列{nbn}的前n項和Tn
(Ⅲ)若cn=($\frac{1}{2}$)n-an,Pn為數(shù)列{$\frac{{c}_{n}^{2}+{c}_{n}+1}{{c}_{n}^{2}+{c}_{n}}$}的前n項和,求不超過P2015的最大的整數(shù).

查看答案和解析>>

同步練習冊答案