我國齊梁時代的數(shù)學家祖暅(公元前5-6世紀)提出了一條原理:“冪勢既同,則積不容異.”這句話的意思是:夾在兩個平行平面間的兩個幾何體,被平行于這兩個平行平面的任何平面所截,如果截得的兩個截面的面積總是相等,那么這兩個幾何體的體積相等.
設:由曲線和直線,所圍成的平面圖形,繞軸旋轉一周所得到的旋轉體為;由同時滿足,,的點構成的平面圖形,繞軸旋轉一周所得到的旋轉體為.根據(jù)祖暅原理等知識,通過考察可以得到的體積為
A.B.C.D.
B

試題分析:根據(jù)題意,由于半個大球的體積減去了兩個半個小球的體積即為的旋轉體的體積,即為 ,故答案為B
點評:理解體積的求解,根據(jù)祖暅原理求解等面積的平面圖形對應的體積相等,有創(chuàng)意,培養(yǎng)同學們分析和解決問題能力。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
如圖所示,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.

(1)證明:PQ⊥平面DCQ;
(2)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下圖表示一個幾何體的三視圖及相應數(shù)據(jù),則該幾何體的體積是
   
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

三棱柱三視圖(主視圖和俯視圖是正方形,左視圖是等腰直角三角形)如圖所示, 則這個三棱柱的全面積等于    (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

三棱錐A-BCD的三條側棱兩兩互相垂直,且AB=2, AD=,AC=1,則A,B兩點在三棱錐的外接球的球面上的距離為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)一個四棱錐的直觀圖和三視圖如圖所示:

(1)求證:;
(2)求出這個幾何體的體積。
(3)若在PC上有一點E,滿足CE:EP=2:1,求證PA//平面BED。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正方體中,與平面所成角的余弦值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在半徑為3的球面上有A、B、C三點,∠ABC=900,BA=BC,球心到平面ABC的距離是,則B、C兩點的球面距離是
              
A、        B、       C、     D、

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖示,AB是圓柱的母線,BD是圓柱底面圓的直徑,C是底面圓周上一點,E是AC中點,且.

(1)求證:;
(2)求直線BD與面ACD所成角的大小.

查看答案和解析>>

同步練習冊答案