10.若“m>a”是“函數(shù)f(x)=($\frac{1}{3}$)x+m-$\frac{1}{3}$的圖象不過第三象限”的必要不充分條件,則實(shí)數(shù)a能取的最大整數(shù)為-1.

分析 先求出當(dāng)x=0時,f(0)的值,根據(jù)題意可得m的范圍,根據(jù)必要條件的定義即可求出a的范圍,問題得以解決.

解答 解:∵$f(0)=m+\frac{2}{3}$,
函數(shù)y=g(x)的圖象不過第三象限,
∴$m+\frac{2}{3}≥0$,即$m≥-\frac{2}{3}$.則“m>a”是“$m≥-\frac{2}{3}$”的必要不充分條件,
∴$a<-\frac{2}{3}$,
則實(shí)數(shù)a能取的最大整數(shù)為-1.
故答案為:-1

點(diǎn)評 本題考查了函數(shù)的圖象和性質(zhì)以及必要條件,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=\frac{{{x^2}+a}}{x}$(常數(shù)a∈R).
(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)若f(1)=2,證明函數(shù)f(x)在(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.將函數(shù) y=cos(2x+$\frac{3π}{2}$)的圖象向左平移 $\frac{π}{4}$個單位長度,再向上平移 1個單位長度后,所得圖象的函數(shù)解析式是y=cos2x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=2$\sqrt{3}$sin(π+x) cos(-3π-x)-2sin($\frac{π}{2}$-x)cos(π-x).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若f($\frac{α}{2}$-$\frac{π}{12}$)=$\frac{3}{2}$,α是第二象限角,求cos(2α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知集合A={1,2,3},B={x|-1<x≤2,x∈N},則A∪B={0,1,2,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)f(x)是定義在[-1,1]上的奇函數(shù),函數(shù)g(x)與f(x)的圖象關(guān)于y軸對稱,且當(dāng)x∈(0,1]時,g(x)=lnx-ax2
(1)求函數(shù)f(x)的解析式;
(2)若對于區(qū)間(0,1]上任意的x,都有|f(x)|≥1成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知全集I=R,
集合A={a|二次方程ax2-x+1=0有實(shí)根},
集合B={a|二次方程x2-ax+1=0有實(shí)根},求(∁IA)∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}滿足:a1=1且an+1-an=$\frac{1}{n}$an+(n+1)2n,設(shè)數(shù)列{an}前n項(xiàng)和為Sn,則Sn為$2+(n-1)•{2^{n+1}}-\frac{n(n+1)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.定義在(-1,1)上的函數(shù)f(x)滿足:對任意x,y∈(-1,1),都有f(x)+f(y)=f($\frac{x+y}{1+xy}$).
(1)求證:函數(shù)f(x)是奇函數(shù);
(2)若當(dāng) x∈(-1,0)時,有f(x)>0,求證:f(x)在(-1,1)上是減函數(shù);
(3)f(1-a)+f(1-3a)<0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案