1.如圖,小圓圈表示網(wǎng)絡結(jié)點,結(jié)點之間的連線表示它們之間有網(wǎng)線連接,連線標注的數(shù)字表示該段網(wǎng)線單位時間內(nèi)可以通過的最大信息量,現(xiàn)從結(jié)點A向結(jié)點B發(fā)送信息,信息可以分開沿不同的路線同時傳遞,則單位時間內(nèi)傳遞的最大信息量為(  )
A.19B.20C.24D.26

分析 根據(jù)圖形可知從A到B共有4條線路,只需計算每條線路上的允許通過最大信息量的最小值即可.

解答 解:由A到B共有4條不同連接線路,由于每條連結(jié)線路都由不同的網(wǎng)線連接,
故只需計算每條連接線路上可以通過的最大信息量的最小值即可,
所以從A到B單位時間內(nèi)傳遞的最大信息量為3+4+6+6=19.
故選A.

點評 本題考查了簡單的合情推理,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.下列說法正確的是( 。
A.命題“?x∈R,使得x2+x+1≥0”的否定是“?x∈R,使得x2+x+1≥0”
B.實數(shù)x>y是x2>y2成立的充要條件
C.設p,q為簡單命題,若“p∨q”為假命題,則“¬p∧¬q”也為假命題
D.命題“若cosα≠1,則α≠0”為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.棱長為2的正四面體的四個頂點都在同一個球面上,若過該球球心的一個截面如圖所示,求圖中三角形(正四面體的截面)的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.等比數(shù)列{an}的前n項和為Sn,若a2=2,a5=16,則S1+S2+…+Sn=2n+1-n-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.復數(shù)z滿足(1+2i)•z=|1+2i|,則z的共軛復數(shù)$\overrightarrow{z}$的虛部為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖是一個算法程序框圖,當輸入的x的值為4時,輸出的結(jié)果恰好是$\frac{1}{4}$,則空白處的關(guān)系式可以是(  )
A.y=2-xB.y=2xC.y=x${\;}^{-\frac{1}{2}}$D.y=x${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若函數(shù)y=ln($\sqrt{1+a{x}^{2}}$-2x)為奇函數(shù),則a=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設m,n是不同的直線,α,β,γ是不同的平面,則下列命題中真命題的是( 。
A.若α⊥β,m∥α,則m⊥βB.若m?α,n?β,且m⊥n,則α⊥β
C.若α∥β,β∥λ,則α∥λD.若m∥α,n∥α,則m∥n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.由正數(shù)組成的集合A具有如下性質(zhì):若a∈A,b∈A且a<b,那么1+$\frac{a}$∈A.
(1)試問集合A能否恰有兩個元素且$\frac{4}{3}$∈A?若能,求出所有滿足條件的集合A;若不能,請說明理由.
(2)試問集合A能否恰有三個元素?若能,請寫出一個這樣的集合A;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案