【題目】如圖,在四棱錐PABCD-中,AB//CD,AB=1,CD=3,AP=2,DP=2,PAD=60°,AB⊥平面PAD,點(diǎn)M在棱PC上.

(Ⅰ)求證:平面PAB⊥平面PCD;

(Ⅱ)若直線PA// 平面MBD,求此時(shí)直線BP與平面MBD所成角的正弦值.

【答案】(Ⅰ)詳見(jiàn)解析;(Ⅱ).

【解析】

I)通過(guò)線面垂直的性質(zhì)得到,通過(guò)計(jì)算證明,由此證得平面,從而證得平面平面.II)以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,利用平面求得點(diǎn)的坐標(biāo),從而求得平面的法向量,再根據(jù)線面角的向量公式,求得線面角的正弦值.

解:(Ⅰ)因?yàn)锳B⊥平面PAD,所以AB⊥DP,

又因?yàn)?/span>,AP=2,∠PAD=60°,

,可得,

所以∠PDA=30°,所以∠APD=90°,即DP⊥AP,

因?yàn)?/span>,所以DP⊥平面PAB,

因?yàn)?/span>,所以平面PAB⊥平面PCD

(Ⅱ)由AB⊥平面PAD

以點(diǎn)A為坐標(biāo)原點(diǎn),AD所在的直線為y軸,AB所在的直線為z軸,如圖所示建立空間直角坐標(biāo)系.

其中,,.

從而,,

設(shè),從而得,

設(shè)平面MBD的法向量為,

若直線PA//平面MBD,滿足,

,取

,

直線BP與平面MBD所成角的正弦值等于:

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),過(guò)點(diǎn)A(-4,4)且焦點(diǎn)在x軸.

(1)求拋物線方程;

(2)直線l過(guò)定點(diǎn)B(-1,0)與該拋物線相交所得弦長(zhǎng)為8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年寒假,因?yàn)?/span>新冠疫情全體學(xué)生只能在家進(jìn)行網(wǎng)上學(xué)習(xí),為了研究學(xué)生網(wǎng)上學(xué)習(xí)的情況,某學(xué)校隨機(jī)抽取名學(xué)生對(duì)線上教學(xué)進(jìn)行調(diào)查,其中男生與女生的人數(shù)之比為,抽取的學(xué)生中男生有人對(duì)線上教學(xué)滿意,女生中有名表示對(duì)線上教學(xué)不滿意.

1)完成列聯(lián)表,并回答能否有的把握認(rèn)為對(duì)線上教學(xué)是否滿意 與性別有關(guān)

態(tài)度

性別

滿意

不滿意

合計(jì)

男生

女生

合計(jì)

100

2)從被調(diào)查的對(duì)線上教學(xué)滿意的學(xué)生中,利用分層抽樣抽取名學(xué)生,再在這名學(xué)生中抽取名學(xué)生,作線上學(xué)習(xí)的經(jīng)驗(yàn)介紹,求其中抽取一名男生與一名女生的概率.

附:.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且曲線在點(diǎn)處的切線與直線垂直.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)求證:時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為拋物線上的兩點(diǎn),的中點(diǎn)的縱坐標(biāo)為4,直線的斜率為.

(1)求拋物線的方程;

(2)已知點(diǎn),為拋物線(除原點(diǎn)外)上的不同兩點(diǎn),直線、的斜率分別為,且滿足,記拋物線、處的切線交于點(diǎn)線段的中點(diǎn)為,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校周五的課程表設(shè)計(jì)中,要求安排8節(jié)課(上午4節(jié)下午4節(jié)),分別安排語(yǔ)文數(shù)學(xué)英語(yǔ)物理化學(xué)生物政治歷史各一節(jié),其中生物只能安排在第一節(jié)或最后一節(jié),數(shù)學(xué)和英語(yǔ)在安排時(shí)必須相鄰(注:上午的最后一節(jié)與下午的第一節(jié)不記作相鄰),則周五的課程順序的編排方法共有( ).

A.4800B.2400C.1200D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中國(guó)象棋規(guī)則下,點(diǎn)A處的“兵”可通過(guò)某條路徑到達(dá)點(diǎn)B(兵在過(guò)河前每步只能走到其前方相鄰的交叉點(diǎn)處,過(guò)河之后每步則可走到前方、左方、右方相鄰的交叉點(diǎn)處,但不能后退,“河”是指圖棋盤(pán)中第5、6條橫線之間的部分).在兵的行進(jìn)過(guò)程中,若棋盤(pán)的每個(gè)交叉點(diǎn)均不被兵重復(fù)走到,則稱此路徑為“無(wú)重復(fù)路徑”.那么,不同的無(wú)重復(fù)路徑的條數(shù)為__________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,直線為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程及曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)直角坐標(biāo)為,直線與曲線交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四面體中,是邊長(zhǎng)為2的正三角形,是直角三角形,,.

1)證明:平面平面;

2)若過(guò)的平面交的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案