若實數(shù)ab滿足ab2,是的最小值是(  )
A.18B.6 C.2D.2
B

試題分析:根據(jù)基本不等式可得,所以的最小值是6.
點評:應用基本不等式時,要注意“一正二定三相等”三個條件缺一不可.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

在矩形中,,現(xiàn)截去一個角,使分別落在邊上,且的周長為8,設,,則用表示的表達式為      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則代數(shù)式的最小值為(   )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


為了提高產(chǎn)品的年產(chǎn)量,某企業(yè)擬在2013年進行技術(shù)改革.經(jīng)調(diào)查測算,產(chǎn)品當年的產(chǎn)量萬件與投入技術(shù)改革費用萬元()滿足為常數(shù)).如果不搞技術(shù)改革,則該產(chǎn)品當年的產(chǎn)量只能是1萬件.已知2013年生產(chǎn)該產(chǎn)品的固定收入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元.由于市場行情較好,廠家生產(chǎn)的產(chǎn)品均能銷售出去.廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品生產(chǎn)成本的倍(生產(chǎn)成本包括固定投入和再投入兩部分資金).
(Ⅰ)試確定的值,并將2013年該產(chǎn)品的利潤萬元表示為技術(shù)改革費用萬元的函數(shù)(利潤=銷售金額­―生產(chǎn)成本―技術(shù)改革費用);
(Ⅱ)該企業(yè)2013年的技術(shù)改革費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則函數(shù)的最小值為(    )
A.B.C.D.非上述情況

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx+2在x=1處有極值,則ab的最大值為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知:,
(1)求證:;   (2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知兩正數(shù)a,b滿足,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若點在第一象限且在上移動,則 (  )
A.最大值為1B.最小值為1 C.最大值為2D.沒有最大、小值

查看答案和解析>>

同步練習冊答案