點(diǎn)P是橢圓=1上的一點(diǎn),F(xiàn)1、F2是焦點(diǎn),且∠F1PF2=30°,求△F1PF2的面積.

答案:
解析:

  解析:在橢圓=1中,a=,b=2,∴c==1.

  ∵點(diǎn)P在橢圓上,

  ∴|PF1|+|PF2|=2a=,|PF1|2+|PF2|2+2|PF1||PF2|=20  ①

  由余弦定理知|PF1|2+|PF2|2-2|PF1||PF2|·cos30°=|F1F2|2=4 、

 、伲诘(2+)|PF1||PF2|=16,

  ∴|PF1||PF2|=16(2-),

  ∴|PF1||PF2|·sin30°=8-


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:山西省山大附中2009-2010學(xué)年高二下學(xué)期3月月考理科數(shù)學(xué)試題 題型:044

如圖,F(xiàn)是橢圓=1(a>b>0)的一個(gè)焦點(diǎn),A、B是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率為,點(diǎn)C在x軸上,BC⊥BD,B,C,F(xiàn)三點(diǎn)確定的圓M恰好與直線x+y+3=0相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)F作一條與兩坐標(biāo)軸都不垂直的直線l交橢圓于P、Q兩點(diǎn),在x軸上是否存在點(diǎn)N,使得NF恰好為△PNQ的內(nèi)角平分線,若存在,求出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山西省山大附中2009-2010學(xué)年高二下學(xué)期3月月考文科數(shù)學(xué)試題 題型:044

如圖,F(xiàn)是橢圓=1(a>b>0)的一個(gè)焦點(diǎn),A、B是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率為,點(diǎn)C在x軸上,BC⊥BF,B,C,F(xiàn)三點(diǎn)確定的圓M恰好與直線x+y+3=0相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)F作一條與兩坐標(biāo)軸都不垂直的直線l交橢圓于P、Q兩點(diǎn),在x軸上是否存在點(diǎn)N,使得NF恰好為△PNQ的內(nèi)角平分線,若存在,求出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年高考數(shù)學(xué)理科(重慶卷) 題型:044

已知以原點(diǎn)O為中心的橢圓的一條準(zhǔn)線方程為,離心率,M是橢圓上的動(dòng)點(diǎn).

(Ⅰ)C,D的坐標(biāo)分別是,求|MC|·|MD|的最大值;

(Ⅱ)如圖,點(diǎn)A的坐標(biāo)為(1,0)B是圓x2y21上的點(diǎn),N是點(diǎn)Mx軸上的射影,點(diǎn)Q滿足條件:,.求線段QB的中點(diǎn)P的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河北省正定中學(xué)2012屆高三第二次綜合考試數(shù)學(xué)理科試題 題型:044

如圖,已知A是橢圓=1(a>b>0)上的一個(gè)動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點(diǎn),弦AB過(guò)點(diǎn)F2,當(dāng)AB⊥x軸時(shí),恰好有|AF1|=3|AF2|.

(1)求橢圓的離心率;

(2)設(shè)P是橢圓的左頂點(diǎn),PA,PB分別與橢圓右準(zhǔn)線交與M,N兩點(diǎn),求證:以MN為直徑的圓D一定經(jīng)過(guò)一定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省高三預(yù)測(cè)卷3數(shù)學(xué) 題型:解答題

(本小題滿分16分)

已知F是橢圓=1的右焦點(diǎn),點(diǎn)P是橢圓上的動(dòng)點(diǎn),點(diǎn)Q是圓上的動(dòng)點(diǎn).

(1)試判斷以PF為直徑的圓與圓的位置關(guān)系;

(2)在x軸上能否找到一定點(diǎn)M,使得=e (e為橢圓的離心率)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案