已知函數(shù)f(x)=
1
2
ax2-2lnx,a∈R.
(Ⅰ)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:綜合題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(Ⅰ)求導(dǎo)函數(shù),可得切線的斜率,求出切點坐標(biāo),利用點斜式可得切線方程;
(Ⅱ)先求出函數(shù)的導(dǎo)數(shù),通過討論a的取值范圍求出函數(shù)的單調(diào)區(qū)間.
解答: 解:(Ⅰ)當(dāng)a=1時,f(x)=
1
2
x2-2lnx+x,f(1)=
1
2
,
∵f′(x)=x-
2
x

∴切線的斜率k=f′(1)=-1,
∴切線方程為:y-
1
2
=-(x-1),
即2x+2y-3=0;
(Ⅱ)由題意知:f(x)的定義域為(0,+∞),f′(x)=
ax2-2
x
(x>0),
a≤0時,f′(x)<0,f(x)的單調(diào)遞減區(qū)間為:(0,+∞),
a>0時,f(x)在(0,
2
a
)遞減,在(
2
a
,+∞)遞增.
點評:本題考查導(dǎo)數(shù)知識的運用,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的單調(diào)性,考查分類討論的數(shù)學(xué)思想,正確求導(dǎo),合理分類是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

x<0時,函數(shù)y=4x+
1
x
( 。
A、有最小值-4
B、有最大值-4
C、有最小值4
D、有最大值4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax+cos2x在區(qū)間[0,
π
6
]上是單調(diào)函數(shù),則實數(shù)a的取值范圍是( 。
A、a≤0或a≥
3
B、a≥
3
C、a≥0或a≤-
3
D、a≤-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x+
12
3x
(x<0),求函數(shù)f(x)的最大值,以及取得最大值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖的倒三角形數(shù)陣滿足:①第一行的第n 個數(shù),分別是1,3,5,7,9,…,2n-1; ②從第二行起,各行中的每一個數(shù)都等于它肩上的兩數(shù)之和; ③數(shù)陣共有n行;
問:第32行的第17個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)一個骰子投擲2次,得到的點數(shù)分別為a,b,求直線y=a-b與函數(shù)y=sinx圖象所有交點中相鄰兩個交點的距離都相等的概率.
(Ⅱ)若a是從區(qū)間[0,6]上任取一個數(shù),b是從區(qū)間[0,6]上任取一個數(shù),求直線y=a-b在函數(shù)y=sinx圖象上方的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)0<a<2時,直線l1:ax-2y-2a+4=0與l2:2x+a2y-2a2-4=0和坐標(biāo)軸成一個四邊形,要使圍成的四邊形面積最小,a應(yīng)取何值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2013-2014第二學(xué)年度某校對高一年級課外活動學(xué)生在教室學(xué)習(xí)的情況進(jìn)行了調(diào)查,其中抽查了高一(2)班的50名學(xué)生得到如下2×2列聯(lián)表:
在教室 不在教室 合計
6 24 30
14 6 20
合計 20 30 50
(1)根據(jù)獨立性檢驗的基本思想,約有多大的把握認(rèn)為“在課外活動女生比男生更喜歡讀書”?
(2)若從高一(2)班抽出學(xué)生對老師進(jìn)行問卷調(diào)查,用分層抽樣方法抽取5人,男生與女生各抽多少?
(3)若從抽出的5名學(xué)生中抽出兩名學(xué)生,按照某種方案進(jìn)行抽取所得到的概率是
7
10
.寫出這種方案,并給出計算過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)a,b滿足log2(a-2)+log2(2b-2)=3,則a+b的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案