11.設(shè)函數(shù)f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3處取得極值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,4]上的最大值與最小值.

分析 (1)求出函數(shù)的導(dǎo)數(shù),計(jì)算f′(3)=0,求出a的值,從而求出函數(shù)的解析式即可;
(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可.

解答 解:(1)f′(x)=6x2-6(a+1)x+6a,
由f(x)在x=3處取得極值,
得f′(3)=54-18(a+1)+6a=0,
解得:a=3,
故f(x)=2x3-12x2+18x+8;
(2)由(1)f′(x)=6x2-24x+18=6(x-1)(x-3),
令f′(x)>0,解得:x>3或x<1,
令f′(x)<0,解得:1<x<3,
故f(x)在(-∞,1)遞增,在(1,3)遞減,在(3,+∞)遞增;
故f(x)max=16,f(x)min=-100.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.從甲、乙、丙、丁四位同學(xué)中選拔一位成績(jī)較穩(wěn)定的優(yōu)秀選手,參加山東省職業(yè)院校技能大賽,在同樣條件下經(jīng)過多輪測(cè)試,成績(jī)分析如表所示,根據(jù)表中數(shù)據(jù)判斷,最佳人選為( 。
成績(jī)分析表
 
平均成績(jī)$\overline{x}$96968585
標(biāo)準(zhǔn)差s4242
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.從雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)F引圓x2+y2=a2的切線,切點(diǎn)為T,延長(zhǎng)FT交雙曲線右支于P點(diǎn),若M為線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則|MO|-|MT|等于( 。
A.c-aB.b-aC.a-bD.c-b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,橢圓上的一點(diǎn)到兩焦點(diǎn)的距離和為6,焦距為$2\sqrt{5}$,求橢圓的參數(shù)方程$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200.220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖示.
(Ⅰ)求直方圖中x的值;
(Ⅱ)求月平均用電量的眾數(shù)和中位數(shù);
(Ⅲ)在月平均用電量為[220,240),[240,260),[260,280)的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π),則$\frac{co{s}^{2}θ+2si{n}^{2}θ}{3co{s}^{2}θ-4si{n}^{2}θ}$的值是$-\frac{41}{37}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(1)寫出C1的普通方程和C2的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P在C1上,點(diǎn)Q在C2上,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,某小區(qū)準(zhǔn)備將閑置的一直角三角形地塊開發(fā)成公共綠地,圖中$∠B=\frac{π}{2},AB=a,BC=\sqrt{3}a$.設(shè)計(jì)時(shí)要求綠地部分(如圖中陰影部分所示)有公共綠地走道MN,且兩邊是兩個(gè)關(guān)于走道MN對(duì)稱的三角形(△AMN和△A'MN).現(xiàn)考慮方便和綠地最大化原則,要求點(diǎn)M與點(diǎn)A,B均不重合,A'落在邊BC上且不與端點(diǎn)B,C重合,設(shè)∠AMN=θ.
(1)若$θ=\frac{π}{3}$,求此時(shí)公共綠地的面積;
(2)為方便小區(qū)居民的行走,設(shè)計(jì)時(shí)要求AN,A'N的長(zhǎng)度最短,求此時(shí)綠地公共走道MN的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-a1nx+b(a,b∈R).
(Ⅰ)若曲線y=f(x)在x=1處的切線的方程為3x-y-3=0,求實(shí)數(shù)a,b的值;
(Ⅱ)若-2≤a<0,對(duì)任意x1,x2∈(0,2],不等式|f(x1)-f(x2)|≤m|$\frac{1}{x_1}-\frac{1}{x_2}$|恒成立,求實(shí)數(shù)m的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案