16.直線x+y-1=0的傾斜角等于(  )
A.45°B.60°C.120°D.135°

分析 由直線方程求得直線的斜率,利用傾斜角的正切值等于斜率得答案.

解答 解:直線x+y-1=0的斜率為-1,
設(shè)其傾斜角為θ(0°≤θ<135°),
∴tanθ=-1,
則θ=135°.
故選:D.

點(diǎn)評(píng) 本題考查了直線的傾斜角,考查了傾斜角與斜率的關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.為了得到函數(shù)$y=sin(2x+\frac{π}{3})$的圖象,可以將函數(shù)$y=sin(2x+\frac{π}{6})$的圖象( 。
A.向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度B.向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度
C.向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度D.向右平移$\frac{π}{12}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知Rt△ABC,點(diǎn)D為斜邊BC的中點(diǎn),$|{\overrightarrow{AB}}|=6\sqrt{3}$,$|{\overrightarrow{AC}}|=6$,$\overrightarrow{AE}=\frac{1}{2}\overrightarrow{ED}$,則$\overrightarrow{AE}•\overrightarrow{EB}$等于( 。
A.-14B.-9C.9D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若$\frac{sinαcosα}{cos2α+1}=1,tan({α-β})=3$,則tanβ=( 。
A.-1B.$\frac{1}{7}$C.$-\frac{1}{7}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=|x|+|x-$\frac{1}{2}$|,A為不等式f(x)<x+$\frac{1}{2}$的解集.
(1)求A;
(2)當(dāng)a∈A時(shí),試比較|log2(1-a)|與|log2(1+a)|的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.函數(shù)f(x)=ln$\frac{{e}^{x}-1}{x}$,數(shù)列{an}滿足a1=1,an+1=f(an).
(1)試求f(x)的單調(diào)區(qū)間;
(2)求證:數(shù)列{an}為遞減數(shù)列,且an>0恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知$\overrightarrow{a}$=(3,1),$\overrightarrow$=(2,λ),若$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)λ的值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=$\sqrt{2}$AA1,Q是棱CC1上的動(dòng)點(diǎn),則當(dāng)BQ+D1Q的長(zhǎng)度取得最小值時(shí),直線B1Q和直線BD所成的角的正切值是$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.從高三年級(jí)隨機(jī)抽取200名學(xué)生,將他們的某次考試數(shù)學(xué)成績(jī)繪制成頻率分布直方圖.由圖中數(shù)據(jù)可知成績(jī)?cè)赱130,140)內(nèi)的學(xué)生人數(shù)為60.

查看答案和解析>>

同步練習(xí)冊(cè)答案