橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦點分別是F1、F2,焦距為2c,一條直線過點E(
a2
c
,0
)交橢圓于A、B兩點,且F1A∥F2B,|F1A|=2|F2B|
(1)求橢圓離心率e;
(2)求橢圓方程.
考點:直線與圓錐曲線的綜合問題
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)由AF1∥F2B,|F1A|=2|F2B|,得
a2
c
-c
a2
c
+c
=
1
2
,從而a2=3c2,即可求出離心率;
(2)由(1)知,b2=a2-c2=2c2,可得橢圓的方程.
解答: 解:(1)由AF1∥F2B,|F1A|=2|F2B|,得
a2
c
-c
a2
c
+c
=
1
2
,從而a2=3c2,故離心率e=
c
a
=
3
3

(2)由(1)知,b2=a2-c2=2c2,所以橢圓的方程可以寫為2x2+3y2=6c2
點評:本題主要考查橢圓的離心率及橢圓的方程,關(guān)鍵是找出幾何量的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,復(fù)數(shù)z=
4+3i
1+2i
,則z的共軛復(fù)數(shù)
.
z
等于( 。
A、-2+iB、-2-i
C、2+iD、2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,f(x)=
2x
x2+1
,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面xoy中,不等式x2+y2≤4確定的平面區(qū)域為U,不等式組
x-y≥0
x+y≥0
確定的平面區(qū)域為V.
(Ⅰ)定義橫、縱坐標(biāo)為整數(shù)的點為“整點”,在區(qū)域U中任取3個“整點”,求這些“整點”恰好有兩個“整點”落在區(qū)域V中的概率;
(Ⅱ)在區(qū)域U中每次任取一個點,若所取的點落在區(qū)域V中,稱試驗成功,否則稱試驗失。F(xiàn)進(jìn)行取點試驗,到成功了4次為止,求在此之前共有三次失敗,且恰有兩次連續(xù)失敗的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,已知AB=4,AD=2,PA=2,PD=2
2
,∠PAB=60°
(Ⅰ)證明AD⊥PB;
(Ⅱ)求二面角P-BD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在邊長為2的正方形ABCD內(nèi)隨機(jī)取一點M,則AM<1的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
(1)命題“?x∈R,2x≤0”的否定是“?x∈R,2x>0”;
(2)關(guān)于x的不等式a<sin2x+
2
sin2x
恒成立,則a的取值范圍是a<3;
(3)對于函數(shù)f(x)=
ax
1+|x|
(a∈R且a≠0)
,則有當(dāng)a=1時,?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個零點;
(4)已知m,n,s,t∈R+,m+2n=5,
m
s
+
n
t
=9,n>m
,且m,n是常數(shù),又s+2t的最小值是1,則m+3n=7.
其中正確的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)a、b、c、d滿足(b+a2-3lna)2+(c-d+2)2=0,則(a-c)2+(b-d)2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈N|0<x<3},B={x|2x-1>1},則A∩B=( 。
A、∅B、{1}
C、{2}D、{1,2}

查看答案和解析>>

同步練習(xí)冊答案