(Ⅰ)試用a表示點(diǎn)P的坐標(biāo).
(Ⅱ)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;
(Ⅲ)設(shè)min{y1,y2,…,yn}為y1,y2,…,yn中最小的一個(gè)設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試函數(shù)f(a)=min{g(a),S(a)}的表達(dá)式.
(Ⅰ)解:將y=代入橢圓方程,得=1,
化簡得b2x4-a2b2x2+a2=0,
由條件,有Δ=a4b4-4a2b2=0,得ab=2
解得x=,x=- (舍去)
故P的坐標(biāo)為(,)
(Ⅱ)解:∵在ΔABP中,|AB|=2,高為,
∴S(a)=·2·=2
∵a>b>0,b=,
∴a>,
即a>,得0<<1,
于是0<S(a)<2故ΔABP的面積函數(shù)S(a)的值域?yàn)?0,)
(Ⅲ)解:g(a)=c2=a2-b2=a2-,
解不等式:g(a)≥S(a),
即a2-≥,
整理得:a8-10a4+24≥0,
即(a4-4)(a4-6)≥0,
即(a4-4)(a4-6)≥0
解得:a≤2(舍去)或a≥,
故f(a)=min{g(a),S(a)}=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
(Ⅰ)試用a表示點(diǎn)P的坐標(biāo).
(Ⅱ)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;
(Ⅲ)設(shè)min{y1,y2,…,yn}為y1,y2,…,yn中最小的一個(gè).設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,求函數(shù)f(a)=min{g(a),S(a)}的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P.
(1)試用a表示點(diǎn)P的坐標(biāo);
(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;
(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè). 設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(Ⅰ)試用a表示點(diǎn)P的坐標(biāo).
(Ⅱ)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;
(Ⅲ)設(shè)min{y1,y2,…,yn}為y1,y2,…,yn中最小的一個(gè)設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試函數(shù)f(a)=min{g(a),S(a)}的表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com