(1)化簡
cos(π-a)
sin(
π
2
+a)
sin(2π+a)cos(2π+a).
(2)求值sin2120°+cos180°+tan45°-cos230°+sin210°.
考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:(1)原式利用誘導(dǎo)公式化簡,約分即可得到結(jié)果;
(2)原式利用特殊角的三角函數(shù)值及誘導(dǎo)公式化簡,計算即可得到結(jié)果.
解答: 解:(1)原式=
-cosα
cosα
sinαcosα=-sinαcosα;
(2)原式=(
3
2
2-1+1-(
3
2
2-
1
2
=-
1
2
點評:此題考查了同角三角函數(shù)基本關(guān)系的運用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在邊長為3的等邊三角形ABC中,D,E分別是AB,AC邊上的點,AD=AE,F(xiàn)是BC的中點,AF與DE交于點G,將△ABF沿AF折起,得到如圖2所示的三棱錐A-BCF,其中BC=
3
2
2

(Ⅰ)證明:DE∥平面BCF;
(Ⅱ)證明:CF⊥平面ABF;
(Ⅲ)當(dāng)AD=
2
3
AB時,求三棱錐F-DEG的體積VD-EFG

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

達州市萬源中學(xué)實施“陽光體育”素質(zhì)教育,要求學(xué)生在校期間每天上午第二節(jié)課下課后迅速到操場參加課間活動.現(xiàn)調(diào)查高三某班70名學(xué)生從教室到操場路上所需時間(單位:分鐘)并將所得數(shù)據(jù)繪制成頻率分布表(如圖),其中,路上所需時間的范圍是(0,10],樣本數(shù)據(jù)分組為(0,2),[2,4),[4,6),[6,8),[8,10).
時間 (0,2) [2,4) [4,6) [6,8) [8,10)
頻數(shù) a c d e
頻率 0.2 b 0.2 0.1 0.1
(Ⅰ)根據(jù)圖表提供的信息求頻數(shù)分布表中的a,b,c,d,e的值;
(Ⅱ)根據(jù)圖表提供的信息估計這70名學(xué)生平均用時和用時的中位數(shù);
(Ⅲ)從(0,2),[2,4),[4,6),[6,8),[8,10)的人群中采用分層抽樣法抽取10人進一步了解參加鍛煉的情況,秉承(0,2),[2,4),中選取2人,從[4,6),[6,8),[8,10)中選取3人共5人作為代表發(fā)言,求選取5名代表中(0,2),[2,4),[4,6),[6,8),[8,10)各1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)甲、乙兩人參加A,B,C三個科目的學(xué)業(yè)水平考試,他們考試成績合格的概率如下表.設(shè)每人每個科目考試相互獨立.
科目A 科目B 科目C
2
3
1
2
3
4
3
5
1
3
1
2
(1)求甲、乙兩人中恰好有1人科目B考試不合格的概率;
(2)求甲、乙兩人中至少有1人三個科目考試成績都合格的概率;
(3)設(shè)甲參加學(xué)業(yè)水平考試成績合格的科目數(shù)為X,求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別為內(nèi)角A、B、C的對邊,且2cos(B-C)=4sinBsinC-1.
(Ⅰ)求A;
(Ⅱ)若a=3,sinB=2sinC,求S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域,并求出最值.
(1)f(x)=2sin(x+
π
3
),x∈[
π
6
,
π
2
]
(2)f(x)=2cos2x+5sinx-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項和為Sn,an+1=2Sn+1(n∈N*).
(1)求a1的值;
(2)設(shè)等差數(shù)列{bn}的公差d<0,前n項和Tn滿足T3=15,且a1+b1,a2+b2,a3+b3成等比數(shù)列,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

粗細(xì)都是1cm一組圓環(huán)依次相扣,懸掛在某處,最上面的圓環(huán)外直徑是20cm,每個圓環(huán)的外直徑皆比它上面的圓環(huán)的外直徑少1cm. 那么從上向下數(shù)第3個環(huán)底部與第1個環(huán)頂部距離是
 
;記從上向下數(shù)第n個環(huán)底部與第一個環(huán)頂部距離是an,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1-x2
-2
x+2
的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案