【題目】如圖所示,在幾何體中,四邊形是菱形,平面,,且,.
(1)證明:平面平面;
(2)若二面角是直二面角,求異面直線與所成角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)通過證明,,證明平面,再得到平面⊥平面.
(2)以為軸和軸,建立空間直角坐標(biāo)系,設(shè),求出平面的法向量和平面的法向量,利用二面角是直二面角求出,得到與的坐標(biāo),利用向量夾角公式,得到答案.
(1)證明:四邊形是菱形,
平面,
而
平面,平面,
平面⊥平面
(2)設(shè)與的交點(diǎn)為,由(1)得,
如圖:分別以為軸和軸,過點(diǎn)作垂直于平面的直線為軸,建立如圖所示的空間直角坐標(biāo)系
.設(shè),
則,
,,.
設(shè)是平面的法向量,則,
即,
令,平面AEF的一個(gè)法向量為
同理設(shè),是平面的法向量,則
得平面的一個(gè)法向量為,
二面角是直二面角,
,.
,
設(shè)異面直線與所成角為
故所求異面直線與所成角為的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(),其中為自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)已知, 為整數(shù),若對(duì)任意,都有恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列中, , .
(Ⅰ)證明數(shù)列是等比數(shù)列;
(Ⅱ)若是數(shù)列的前項(xiàng)和,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的最小正周期;
(2)求的值域;
(3)求的遞增區(qū)間
(4)求的對(duì)稱軸;
(5)求的對(duì)稱中心;
(6)的三邊a,b,c滿足,且b所對(duì)的角為x,求x的取值范圍及函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位:cm).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).
(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在(μ-3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學(xué)期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ-3σ,μ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
①試說(shuō)明上述監(jiān)控生產(chǎn)過程方法的合理性;
②下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:
經(jīng)計(jì)算得==9.97,s==≈0.212,其中xi為抽取的第i個(gè)零件的尺寸,i=1,2,…,16.
用樣本平均數(shù)作為μ的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值,,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除(﹣3+3)之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)μ和σ(精確到0.01).
附:若隨機(jī)變量Z服從正態(tài)分布N(μ,σ2),則P(μ-3σ<Z<μ+3σ)=0.997 4.0.997 416≈0.959 2,≈0.09.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)動(dòng)點(diǎn)到定點(diǎn)的距離比它到軸的距離大,記點(diǎn)的軌跡為曲線.
(1)求點(diǎn)的軌跡方程;
(2)若圓心在曲線上的動(dòng)圓過點(diǎn),試證明圓與軸必相交,且截軸所得的弦長(zhǎng)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為: .
(1)把直線的參數(shù)方程化為極坐標(biāo)方程,把曲線的極坐標(biāo)方程化為普通方程;
(2)求直線與曲線交點(diǎn)的極坐標(biāo)(≥0,0≤).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),隨著“一帶一路”倡議的推進(jìn),中國(guó)與沿線國(guó)家旅游合作越來(lái)越密切,中國(guó)到“一帶一路”沿線國(guó)家的游客人也越來(lái)越多,如圖是2013-2018年中國(guó)到“一帶一路”沿線國(guó)家的游客人次情況,則下列說(shuō)法正確的是( 。
①2013-2018年中國(guó)到“一帶一路”沿線國(guó)家的游客人次逐年增加
②2013-2018年這6年中,2016年中國(guó)到“一帶一路”沿線國(guó)家的游客人次增幅最小
③2016-2018年這3年中,中國(guó)到“一帶一路”沿線國(guó)家的游客人次每年的增幅基本持平
A.①③B.②③C.①②D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓: 的離心率為,拋物線:截軸所得的線段長(zhǎng)等于.與軸的交點(diǎn)為,過點(diǎn)作直線與相交于點(diǎn)直線分別與相交于.
(1)求證:;
(2)設(shè),的面積分別為,若 ,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com