(本小題滿分1 3分)
如圖①,一條寬為l km的兩平行河岸有村莊A和供電站C,村莊B與A、C的直線距離都是2km,BC與河岸垂直,垂足為D.現(xiàn)要修建電纜,從供電站C向村莊A、B供電.修建地下電纜、水下電纜的費(fèi)用分別是2萬元/km、4萬元/km.
(Ⅰ)已知村莊A與B原來鋪設(shè)有舊電纜仰,需要改造,舊電纜的改造費(fèi)用是0.5萬元/km.現(xiàn)
決定利用舊電纜修建供電線路,并要求水下電纜長度最短,試求該方案總施工費(fèi)用的最小值.
(Ⅱ)如圖②,點(diǎn)E在線段AD上,且鋪設(shè)電纜的線路為CE、EA、EB.若∠DCE=θ (0≤θ≤),試用θ表示出總施工費(fèi)用y(萬元)的解析式,并求y的最小值.
解:(Ⅰ)由已知可得為等邊三角形.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519215521874140/SYS201205251923568750570739_DA.files/image002.png">,所以水下電纜的最短線路為.
過作于E,可知地下電纜的最短線路為、. ······· 3分
又,
故該方案的總費(fèi)用為
(萬元) …………6分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519215521874140/SYS201205251923568750570739_DA.files/image012.png">
所以.·············· 7分
則, ········ 9分
令則 , ···· 10分
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519215521874140/SYS201205251923568750570739_DA.files/image018.png">,所以,
記
當(dāng),即≤時(shí),
當(dāng),即<≤時(shí), ,
所以,從而,·········· 12分
此時(shí),
因此施工總費(fèi)用的最小值為()萬元,其中. ··· 13分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省福州市高三第一學(xué)期期末質(zhì)量檢測(cè)理科數(shù)學(xué) 題型:解答題
.(本小題滿分l 3分)某種商品原來每件售價(jià)為25元,年銷售量8萬件.
(I)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收人不低于原收入,該商品每件定價(jià)最多為多少元?
(Ⅱ)為了擴(kuò)大該商品的影響力,提高年銷售量.公司決定明年對(duì)該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價(jià)到x元.公司擬投入 (x2—600)萬元作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入x萬元作為浮動(dòng)宣傳費(fèi)用.試問:當(dāng)該商品明年的銷售量a至少應(yīng)達(dá)到多少萬件時(shí),才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省福州市高三第一學(xué)期期末質(zhì)量檢測(cè)理科數(shù)學(xué) 題型:解答題
(本小題滿分1 3分)如圖,在△ABC中,已知B=,AC=4,D為BC邊上一點(diǎn).
(I)若AD=2,S△ABC=2,求DC的長;
(Ⅱ)若AB=AD,試求△ADC的周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省福州市高三第一學(xué)期期末質(zhì)量檢測(cè)文科數(shù)學(xué) 題型:解答題
(本小題滿分1 4分)已知m,t∈R,函數(shù)f (x) =(x - t)3+m.
(I)當(dāng)t =1時(shí),
(i)若f (1) =1,求函數(shù)f (x)的單調(diào)區(qū)間;
(ii)若關(guān)于x的不等式f (x)≥x3—1在區(qū)間[1,2]上有解,求m的取值范圍;
(Ⅱ)已知曲線y= f (x)在其圖象上的兩點(diǎn)A(x1,f (x1)),B(x2,f (x2)))( x1≠x2)處的切線
分別為l1、l2.若直線l1與l2平行,試探究點(diǎn)A與點(diǎn)B的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省福州市高三第一學(xué)期期末質(zhì)量檢測(cè)文科數(shù)學(xué) 題型:解答題
.(本小題滿分1 2分)設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c.已知a=3,B=,S△ABC=6
( I )求△ABC的周長;
(Ⅱ)求sin2A的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com