【題目】設(shè)函數(shù).

(1)若的極大值點(diǎn),求的取值范圍;

(2)當(dāng)時(shí),方程(其中)有唯一實(shí)數(shù)解,求的值.

【答案】(1)(2)

【解析】

(1)由題意,求得函數(shù)的導(dǎo)數(shù)得到,分類討論得到函數(shù)的單調(diào)性和極值,即可求解實(shí)數(shù)的取值范圍;

(2)因?yàn)榉匠?/span>有唯一實(shí)數(shù)解,即有唯一實(shí)數(shù)解,設(shè),利用導(dǎo)數(shù),令,得,由此入手即可求解實(shí)數(shù)m的值.

(1)由題意,函數(shù)的定義域?yàn)?/span>,則導(dǎo)數(shù)為

,得,∴

①若,由,得.

當(dāng)時(shí),,此時(shí)單調(diào)遞增;

當(dāng)時(shí),,此時(shí)單調(diào)遞減.

所以的極大值點(diǎn)

②若,由,得,或.

因?yàn)?/span>的極大值點(diǎn),所以,解得

綜合①②:的取值范圍是

(2)因?yàn)榉匠?/span>有唯一實(shí)數(shù)解,所以有唯一實(shí)數(shù)解

設(shè),則,

,即.

因?yàn)?/span>,,所以(舍去),

當(dāng)時(shí),,上單調(diào)遞減,

當(dāng)時(shí),單調(diào)遞增

當(dāng)時(shí),取最小值

,即,

所以,因?yàn)?/span>,所以(*)

設(shè)函數(shù),

因?yàn)楫?dāng)時(shí),是增函數(shù),所以至多有一解

因?yàn)?/span>,所以方程(*)的解為,即,解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,ACAB邊上的中線長(zhǎng)之和等于9

1)求重心M的軌跡方程;

2)求頂點(diǎn)A的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,過點(diǎn)向圓引兩條切線,,切點(diǎn)為,,若點(diǎn)的坐標(biāo)為,則直線的方程為____________;若為直線上一動(dòng)點(diǎn),則直線經(jīng)過定點(diǎn)__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,a1=60,且an+1=an+3,則這個(gè)數(shù)列的前40項(xiàng)的絕對(duì)值之和為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)黨中央“扶貧攻堅(jiān)”的號(hào)召,某單位指導(dǎo)一貧困村通過種植紫甘薯來提高經(jīng)濟(jì)收入.紫甘薯對(duì)環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗(yàn),隨著溫度的升高,其死亡株數(shù)成增長(zhǎng)的趨勢(shì).下表給出了2017年種植的一批試驗(yàn)紫甘薯在溫度升高時(shí)6組死亡的株數(shù):

經(jīng)計(jì)算: , , , , , ,其中分別為試驗(yàn)數(shù)據(jù)中的溫度和死亡株數(shù), .

(1)若用線性回歸模型,求關(guān)于的回歸方程(結(jié)果精確到);

(2)若用非線性回歸模型求得關(guān)于的回歸方程為,且相關(guān)指數(shù)為.

(i)試與(1)中的回歸模型相比,用說明哪種模型的擬合效果更好;

(ii)用擬合效果好的模型預(yù)測(cè)溫度為時(shí)該批紫甘薯死亡株數(shù)(結(jié)果取整數(shù)).

附:對(duì)于一組數(shù)據(jù) ,…… ,其回歸直線的斜率和截距的最小二乘估計(jì)分別為: ;相關(guān)指數(shù)為: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)西部某省級(jí)風(fēng)景區(qū)內(nèi)住著一個(gè)少數(shù)民族村,該村投資了萬元修復(fù)和加強(qiáng)民俗文化基礎(chǔ)設(shè)施,據(jù)調(diào)查,修復(fù)好村民俗文化基礎(chǔ)設(shè)施后,任何一個(gè)月內(nèi)(每月按天計(jì)算)每天的旅游人數(shù)與第天近似地滿足(千人),且參觀民俗文化村的游客人均消費(fèi)近似地滿足(元).

(1)求該村的第x天的旅游收入,并求最低日收入為多少?(單位:千元,,);

(2)若以最低日收入的作為每一天的純收入計(jì)量依據(jù),并以純收入的稅率收回投資成本,試問該村在兩年內(nèi)能否收回全部投資成本?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知坐標(biāo)平面上動(dòng)點(diǎn)與兩個(gè)定點(diǎn), ,且.

(1)求點(diǎn)的軌跡方程,并說明軌跡是什么圖形;

(2)記(1)中軌跡為,過點(diǎn)的直線所截得的線段長(zhǎng)度為8,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是雙曲線的兩個(gè)焦點(diǎn),一條直線與雙曲線的右支相切,且分別交兩條漸近線于A、B.又設(shè)O為坐標(biāo)原點(diǎn),求證: 1 、A、B四點(diǎn)在同一個(gè)圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題:①“存在,使得成立的充分不必要條件;②“存在,使得成立的必要條件;③“不等式對(duì)一切恒成立的充要條件. 其中所以真命題的序號(hào)是

A.B.②③C.①②D.①③

查看答案和解析>>

同步練習(xí)冊(cè)答案