【題目】某學(xué)校高一 、高二 、高三三個(gè)年級(jí)共有 名教師,為調(diào)查他們的備課時(shí)間情況,通過(guò)分層

抽樣獲得了名教師一周的備課時(shí)間 ,數(shù)據(jù)如下表(單位 :小時(shí)):

高一年級(jí)

高二年級(jí)

高三年級(jí)

(1)試估計(jì)該校高三年級(jí)的教師人數(shù) ;

(2)從高一年級(jí)和高二年級(jí)抽出的教師中,各隨機(jī)選取一人,高一年級(jí)選出的人記為甲 ,高二年級(jí)選出的人記為乙 ,求該周甲的備課時(shí)間不比乙的備課時(shí)間長(zhǎng)的概率 ;

(3)再?gòu)母咭、高二、高三三個(gè)年級(jí)中各隨機(jī)抽取一名教師,他們?cè)撝艿膫湔n時(shí)間分別是(單位: 小時(shí)),這三個(gè)數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,表格中的數(shù)據(jù)平均數(shù)記為 ,試判斷的大小. (結(jié)論不要求證明)

【答案】(1);(2);(3)

【解析】試題分析:(1)直接根據(jù)分層抽樣方法,可得高三年級(jí)的教師共有(人);(2)根據(jù)互斥事件、獨(dú)立事件的概率公式求解;(3)分別求出三組總平均值,以及新加入的三個(gè)數(shù)的平均數(shù)為9,比較大小即可.

試題解析:(1)抽出的20位教師中,來(lái)自高三年級(jí)的有8名,

根據(jù)分層抽樣方法,高三年級(jí)的教師共有(人)

(2)設(shè)事件為 “甲是現(xiàn)有樣本中高一年級(jí)中的第個(gè)教師”, ,

事件 “乙是現(xiàn)有樣本中高二年級(jí)中的第個(gè)教師”,

由題意知: , ,

設(shè)事件為“該周甲的備課時(shí)間比乙的備課時(shí)間長(zhǎng)”,由題意知,

所以

(3), ,

三組總平均值,

新加入的三個(gè)數(shù)的平均數(shù)為9,比小,

故拉低了平均值,∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐S﹣ABCD,底面ABCD為菱形,SA⊥平面ABCD,∠ADC=60°,E,F(xiàn)分別是SC,BC的中點(diǎn).

(1)證明:SD⊥AF;
(2)若AB=2,SA=4,求二面角F﹣AE﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(只填正確說(shuō)法序號(hào))
①若集合A={y|y=x﹣1},B={y|y=x2﹣1},則A∩B={(0,﹣1),(1,0)};
是函數(shù)解析式;
是非奇非偶函數(shù);
④設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0),若f(x1)=f(x2)(x1≠x2),則f(x1+x2)=c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)f(x)是滿足f(x)+f(﹣x)=0,在(﹣∞,0)上 ,且f(5)=0,則使f(x)<0的x取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 )的左焦點(diǎn)與拋物線的焦點(diǎn)重合,直線與以原點(diǎn)為圓心,以橢圓的離心率為半徑的圓相切.

(Ⅰ)求該橢圓的方程;

(Ⅱ)過(guò)點(diǎn)的直線交橢圓于 兩點(diǎn),線段的中點(diǎn)為, 的垂直平分線與軸和軸分別交于, 兩點(diǎn).記的面積為, 的面積為.問(wèn):是否存在直線,使得,若存在,求直線的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)镽的函數(shù)f(x)既是奇函數(shù),又是周期為3的周期函數(shù),當(dāng)x∈(0, )時(shí),f(x)=sinπx,f( )=0,則函數(shù)f(x)在區(qū)間[0,6]上的零點(diǎn)個(gè)數(shù)是(
A.9
B.7
C.5
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:f(x)= 在區(qū)間(1,+∞)上是減函數(shù);命題q;x1x2是方程x2﹣ax﹣2=0的兩個(gè)實(shí)根,不等式m2+5m﹣3≥|x1﹣x2|對(duì)任意實(shí)數(shù)α∈[﹣1,1]恒成立;若¬p∧q為真,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx和反比例函數(shù) 在同一坐標(biāo)系中的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有n2n∈N*)個(gè)給定的不同的數(shù)隨機(jī)排成一個(gè)下圖所示的三角形數(shù)陣:

設(shè)Mk是第k行中的最大數(shù),其中1≤kn,k∈N*.記M1M2Mn的概率為pn

(1)求p2的值;

(2)證明:pn

查看答案和解析>>

同步練習(xí)冊(cè)答案