已知集合A={y|x2+y2=1},B={y|y=x},則A∩B=( 。
A、{(-
2
2
,-
2
2
),(
2
2
,
2
2
)}
B、{-
2
2
2
2
}
C、[-1,1]
D、{-1,1}
考點:交集及其運算
專題:集合
分析:聯(lián)立直線和圓的方程,求解y即可得到結(jié)論.
解答: 解:由
x2+y2=1
y=x
,解得
x=
2
2
y=
2
2
x=-
2
2
y=-
2
2

則A∩B={-
2
2
,
2
2
},
故選:B.
點評:本題主要考查集合的基本運算,聯(lián)立直線和圓的方程,求解y是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P(x,y)為圓x2+y2=4上任意一點,則x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα=-
3
5
,α∈(
π
2
,π),則cos(
π
4
+α)的值為( 。
A、-
7
2
10
B、
2
10
C、-
2
10
D、
7
2
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若α=
π
4
,則tanα=1”的逆否命題是( 。
A、若tanα≠1,則α≠
π
4
B、若α=
π
4
,則tanα≠1
C、若α≠
π
4
,則tanα≠1
D、若tanα≠1,則α=
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,點P是曲線C:ρ=2cosθ上的一點,則P的極坐標(biāo)可能是( 。
A、(2,0)
B、(2,
π
2
C、(1,
π
4
D、(1,
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=x3,b=x2-x+1,當(dāng)x>1時,a與b的大小關(guān)系是( 。
A、a<bB、a=b
C、a>bD、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四面體ABCD中,AD與BC互相垂直,AD=2BC=4,且AB+BD=AC+CD=2
14
,則四面體ABCD的體積的最大值是(  )
A、4
B、2
10
C、5
D、
30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列選項中,說法正確的是( 。
A、命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B、命題“若am2<bm2,則a<b”的逆命題是真命題
C、命題“?x∈R,x2-x+1≥0”的否定是:“?x0∈R,x02-x0+1≤0”
D、命題“若x=y,則cosx=cosy”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
(3x-2)2
的導(dǎo)數(shù)是(  )
A、
6
(3x-2)3
B、
6
(3x-2)2
C、-
6
(3x-2)3
D、-
6
(3x-2)2

查看答案和解析>>

同步練習(xí)冊答案