分析 討論a的取值:a<2,2≤a≤3,a>3,三種情況,求出每種情況下的f(x)的最小值,讓最小值大于等于0從而求出a的取值范圍.
解答 解:f(x)=x|x-a|-a;
∴①若a<2,則x=2時(shí),f(x)在[2,3]上取得最小值f(2)=2(2-a)-a=4-3a;
∴4-3a≥0,a≤$\frac{4}{3}$;
∴a≤$\frac{4}{3}$;
②若2≤a≤3,則x=a時(shí),f(x)取得最小值f(a)=-a;
-a<0,不滿足f(x)≥0;
即這種情況不存在;
③若a>3,則x=3時(shí),f(x)取得最小值f(3)=3(a-3)-a=2a-9;
∴2a-9≥0,a≥$\frac{9}{2}$;
∴a≥$\frac{9}{2}$;
綜上得a的取值范圍為:(-∞,$\frac{4}{3}$]∪[$\frac{9}{2}$,+∞).
點(diǎn)評 考查奇函數(shù)的定義,奇函數(shù)在原點(diǎn)有定義時(shí)f(0)=0,函數(shù)零點(diǎn)的定義,含絕對值函數(shù)求最值的方法:觀察解析式的方法,以及畫出分段函數(shù)的圖象,以及根據(jù)圖象求函數(shù)零點(diǎn)個(gè)數(shù)的方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充分必要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 真,假,真 | B. | 假,假,真 | C. | 真,真,假 | D. | 假,假,假 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com