20.在下列命題中,正確的是( 。
A.若直線m、n都平行于平面α,則m∥n
B.設(shè)α-l-β是直二面角,若直線m⊥l,則m⊥β
C.若直線m、n在平面α內(nèi)的射影依次是一個點和一條直線,且m⊥n,則n在α內(nèi)或n與α平行
D.設(shè)m、n是異面直線,若m與平面α平行,則n與α相交

分析 逐項分析即可得到答案.解答過程中注意判斷線與線、線與面的關(guān)系的前提條件.

解答 解:A、在空間中,當(dāng)兩條線都與一平面平行時,這兩條線可能相交,平行或異面,故A錯誤;
B、線面垂直需垂直于平面內(nèi)兩相交直線,故B錯誤;
C、由直線m的射影是點可知,直線m垂直于平面,因為m垂直于n,所以有直線n平行于平面或在平面內(nèi),故C正確;
D、兩條異面直線可同時平行于一平面,故D錯誤.
故選:C.

點評 本題考查空間中線與線,線與面的位置關(guān)系.掌握其判斷方法和依據(jù)是解題關(guān)鍵.屬于易錯題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1的左右焦點分別為F1,F(xiàn)2,P為右支上一點,且|$\overrightarrow{{PF}_{1}}$|=8,$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$=0,則雙曲線的漸近線方程是(  )
A.y=±2$\sqrt{2}$xB.y=±2$\sqrt{6}$xC.y=±5xD.y=±$\frac{3}{4}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖是正方體的平面展開圖,則在這個正方體中,以下四個判斷中,正確的序號是②④.
①BM與ED平行;②CN與BE是異面直線;③CN與BM成60°角;④DM與BN是異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在銳角三角形ABC,角A,B,C的對邊分別為a,b,c,且滿足(b2-a2-c2)sinAcosA=accos(A+C).
(1)求角A;
(2)若a=$\sqrt{2}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)直線y=x+2a與圓C:x2+y2-2ay-2=0相交于A,B兩點,若|AB|=2$\sqrt{3}$,則圓C的內(nèi)接正三角形的面積為(  )
A.4B.8C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.sin(-$\frac{5}{6}$π)的值是( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線mx+4y-2=0與直線2x-5y+n=0垂直,垂足為(1,p),則n的值為( 。
A.-12B.-2C.0D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)(2a${\;}^{\frac{3}{2}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$);
(2)($\root{3}{2}$×$\sqrt{3}$)6+($\sqrt{2\sqrt{2}}$)${\;}^{\frac{4}{3}}$-$\root{4}{2}$×80.25-(-2005)0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.空間四邊形ABCD中,AB=CD且AB與CD所成的角為30°,E、F分別為BC、AD的中點,則EF與AB所成角的大小為15°或75°.

查看答案和解析>>

同步練習(xí)冊答案