精英家教網 > 高中數學 > 題目詳情

、 已知≤1,若函數在區(qū)間[1,3]上的最大值為,最小值為,令

 (1)求的函數表達式;

 (2)判斷并證明函數在區(qū)間[,1]上的單調性;并求出的最小值 .

 

【答案】

:(1)∵的圖像為開口向上的拋物線,

且對稱軸為

有最小值 .

  當2≤≤3時,[有最大值;

當1≤<2時,a∈(有最大值M(a)=f(3)=9a-5;

(2)設

上是減函數.

   

上是增函數.∴當時,有最小值

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=px-
px
-2lnx、
(Ⅰ)若p=3,求曲f9想)在點(1,f(1))處的切線方程;
(Ⅱ)若p>0且函f(x)在其定義域內為增函數,求實數p的取值范圍;
(Ⅲ)若函數y=f(x)在x∈(0,3)存在極值,求實數p的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a、b∈R,向量
e1
=(x,1),
e2
=(-1,b-x),函數f(x)=a-
1
e1
e2
是偶函數.
(1)求b的值;
(2)若在函數定義域內總存在區(qū)間[m,n](m<n),使得y=f(x)在區(qū)間[m,n]上的函數值組成的集合也是[m,n],求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

在經濟快速發(fā)展過程中.乙工廠(以下簡稱乙方)生產須占用甲農場(以下簡稱甲方)的資源,因此甲方有權向乙方索賠以彌補經濟損失并獲得一定的凈收入.已知在不賠付甲方的情況下,乙方的年利潤x(元)與年產t(噸)滿足函教關系x=2000
t
.甲方每年受乙方生產影響的經濟損失金額y=0.002t2(元),且乙方每生產一噸產品必須賠付甲方s元(以下s為賠付價格).
(1)求乙方獲得最大利潤時的年產t(噸)與賠付價格s(元)滿足的關系式;
(2)若在乙方按照獲得最大利潤的年產量進行生產的前提下,甲方要在索賠中獲得最大凈收入,應向乙方要求的賠付價格s是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=logax(a>0,且a≠1)自變量與函數值的部分對應值如下表:
x 2 1 0.25
f(x) -1 0 2
則a=
1
2
1
2
;若函數g(x)=xf(x),則滿足條件g(x)>0的x的集合為
{x|0<x<1}
{x|0<x<1}

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)

       已知定理:若“為常數,滿足,則函數的圖象關于點中心對稱。”設函數,定義域為A。

   (1)證明:函數的圖象關于點中心對稱;

   (2)當時,求函數值的取值范圍;

   (3)對于給定的,設計構造過程:,若,構造過程將繼續(xù)下去;若,構造過程都可以無限進行下去,求的值。

查看答案和解析>>

同步練習冊答案